Advanced Malware Detection Techniques based on Artificial Intelligence and Distributed Machine Learning
基于人工智能和分布式机器学习的先进恶意软件检测技术
基本信息
- 批准号:531722-2018
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Existing antivirus systems rely on signature-based, behavioural or sandbox-based solutions, which are insufficient in today's fast-changing Internet. Signature and heuristic based approaches are ineffective against targeted threats and new malware. Sandboxes can detect previously unknown threats, but are not effective at prevention, since the suspicious program must be executed in a sandbox, which often requires minutes or even hours. In this project, we aim to investigate the application of machine learning and automated big data processing to malware detection and analysis, focusing on four sub-projects: 1) Android Malware detection via extensive feature engineering and Factorization Machines; 2) Android Malware detection via Graph Convolutional Networks, a emerging deep learning technique executed on graphs; 3) PC Malware detection based on Deep Neural Networks and Genetic Algorithms; 4) the development of distributed algorithms and architectures for multiparty model training. The first subproject focuses on extracting Android app features into sparse arrays through the decompilation of APK files and then detecting malware via the use of a Factorization Machine. The the aim of the second subproject is to detect Android malware by generating an app's internal structure using call graphs. These graphs are then fed into Graph Convolutional Neural Networks. The third subproject will first aim to extract features from PC files into a common format and then both train and optimize Deep Neural Networks via the use of Genetic Algorithms. At its core, the final subproject is meant to allow different anti-virus clients to contribute to training machine learning models without sharing raw data or running into privacy leakage risks. The project will emphasize the development of actionable intelligence for malware detection and its large-scale implementation based on decentralized datasets in reality.
现有的防病毒系统依赖于基于签名的基于签名的基于签名的解决方案,这些解决方案在当今快速变化的互联网中不足。基于签名和启发式方法的方法对有针对性的威胁和新恶意软件无效。沙箱可以检测到以前未知的威胁,但在预防方面无效,因为可疑程序必须在沙箱中执行,这通常需要几分钟甚至数小时。在该项目中,我们旨在调查机器学习和自动数据处理在恶意软件检测和分析中的应用,重点关注四个子项目:1)通过广泛的功能工程和分解机Android恶意软件检测; 2)通过图形卷积网络检测Android恶意软件,这是一种在图表上执行的新兴深度学习技术; 3)基于深神网络和遗传算法的PC恶意软件检测; 4)开发用于多方模型培训的分布式算法和体系结构。第一个子项目的重点是通过APK文件的反编译将Android App功能提取到稀疏阵列中,然后通过使用分解计算机检测恶意软件。第二个子项目的目的是通过使用呼叫图生成应用程序的内部结构来检测Android恶意软件。然后将这些图馈入图形卷积神经网络。第三个子项目将首先旨在将PC文件中的功能提取到通用格式中,然后通过使用遗传算法来训练并优化深层神经网络。最终的副本旨在允许不同的反病毒客户为培训机器学习模型做出贡献,而无需共享原始数据或遇到隐私泄漏风险。该项目将强调基于现实中分散的数据集的恶意软件检测及其大规模实施的可行智能的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Niu, Di其他文献
FDML: A Collaborative Machine Learning Framework for Distributed Features
- DOI:
10.1145/3292500.3330765 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
Hu, Yaochen;Niu, Di;Zhou, Shengping - 通讯作者:
Zhou, Shengping
Random Network Coding in Peer-to-Peer Networks: From Theory to Practice
- DOI:
10.1109/jproc.2010.2091930 - 发表时间:
2011-03-01 - 期刊:
- 影响因子:20.6
- 作者:
Li, Baochun;Niu, Di - 通讯作者:
Niu, Di
BLCA prognostic model creation and validation based on immune gene-metabolic gene combination.
基于免疫基因-代谢基因组合的BLCA预后模型创建和验证。
- DOI:
10.1007/s12672-023-00853-6 - 发表时间:
2023-12-16 - 期刊:
- 影响因子:2.2
- 作者:
Yue, Shao-Yu;Niu, Di;Liu, Xian-Hong;Li, Wei-Yi;Ding, Ke;Fang, Hong-Ye;Wu, Xin-Dong;Li, Chun;Guan, Yu;Du, He-Xi - 通讯作者:
Du, He-Xi
Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling
- DOI:
10.1016/j.applthermaleng.2015.04.009 - 发表时间:
2015-06-25 - 期刊:
- 影响因子:6.4
- 作者:
Wang, Guilian;Niu, Di;Ding, Guifu - 通讯作者:
Ding, Guifu
A comparison of visual discomfort experienced by surgeons in wireless versus conventional endoscopy in laparoscopic surgery.
- DOI:
10.1097/cu9.0000000000000182 - 发表时间:
2023-06 - 期刊:
- 影响因子:1.6
- 作者:
Xu, Hanjiang;Niu, Di;Yang, Cheng;Hao, Zongyao;Liang, Chaozhao - 通讯作者:
Liang, Chaozhao
Niu, Di的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Niu, Di', 18)}}的其他基金
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
- 批准号:
RGPIN-2019-04998 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
- 批准号:
RGPIN-2019-04998 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Advanced Malware Detection Techniques based on Artificial Intelligence and Distributed Machine Learning
基于人工智能和分布式机器学习的先进恶意软件检测技术
- 批准号:
531722-2018 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Collaborative Research and Development Grants
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
- 批准号:
RGPIN-2019-04998 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
- 批准号:
RGPIN-2019-04998 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Advanced Malware Detection Techniques based on Artificial Intelligence and Distributed Machine Learning
基于人工智能和分布式机器学习的先进恶意软件检测技术
- 批准号:
531722-2018 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Collaborative Research and Development Grants
Intelligent Internet-Scale Multimedia Storage and Delivery
智能互联网规模多媒体存储和传输
- 批准号:
436170-2013 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Analyzing real estate transaction and pricing data via statistical machine learning
通过统计机器学习分析房地产交易和定价数据
- 批准号:
479555-2015 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Collaborative Research and Development Grants
Intelligent Internet-Scale Multimedia Storage and Delivery
智能互联网规模多媒体存储和传输
- 批准号:
436170-2013 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Intelligent Internet-Scale Multimedia Storage and Delivery
智能互联网规模多媒体存储和传输
- 批准号:
436170-2013 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
移动应用云平台中未知恶意软件检测关键技术
- 批准号:62372121
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
对抗环境下高鲁棒性的Android恶意软件检测方法研究
- 批准号:62372086
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
软件定义云网络租户恶意加密流量精准高效检测研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
软件定义云网络租户恶意加密流量精准高效检测研究
- 批准号:62202260
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于抽象行为序列的移动恶意软件智能检测方法研究
- 批准号:62102091
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Using synthetic data and unsupervised learning methods for malware detection
使用合成数据和无监督学习方法进行恶意软件检测
- 批准号:
10076857 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Collaborative R&D
XAdv: Robust Explanations for Malware Detection
XAdv:恶意软件检测的有力解释
- 批准号:
EP/X015971/1 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Research Grant
Using synthetic data and unsupervised learning methods for malware detection
使用合成数据和无监督学习方法进行恶意软件检测
- 批准号:
10099768 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Collaborative R&D