Analyzing real estate transaction and pricing data via statistical machine learning
通过统计机器学习分析房地产交易和定价数据
基本信息
- 批准号:479555-2015
- 负责人:
- 金额:$ 4.37万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Real-estate property price estimation and prediction is key to Canadian home buyers, investors and policy makers. To date, most real-estate market assessments accessible by Canadian users are based on big trend analysis, qualitative prediction or traditional real-estate market indices, leading to a limited accuracy. The research literature has presented a large number of both parametric and non-parametric models to assess the market value of an individual property based on the sold prices of other properties transacted in the same region. However, even with non-parametric models and the latest kernel-based regression, existing approaches have limited accuracy and are unable to handle irregular regions with interior uninhabitated areas or to capture price jumps across heterogeneous areas. To overcome these difficulties, in this project, we will propose and extensively study a number of new statistical learning tools for applications to real-estate valuation, price estimation and prediction, including finite element analysis, spatial spline regression, roughness and fused-LASSO-type regularization, low-rank matrix completion and state-space models with penalized Kalman filters. With carefully designed structures, our proposed models can be decomposed and solved using convex optimization. We will also study the implementation issues for faster computation in commercial real-estate market assessment applications with a large amount of data.
房地产价格估算和预测对于加拿大购房者、投资者和政策制定者来说至关重要。迄今为止,加拿大用户获得的大多数房地产市场评估都是基于大趋势分析、定性预测或传统房地产市场指数,导致准确性有限。研究文献提出了大量参数和非参数模型,用于根据同一地区交易的其他房产的售价来评估单个房产的市场价值。然而,即使使用非参数模型和最新的基于内核的回归,现有方法的准确性也有限,并且无法处理具有内部无人居住区域的不规则区域或捕获异质区域的价格跳跃。为了克服这些困难,在这个项目中,我们将提出并广泛研究一些新的统计学习工具,用于房地产估价、价格估计和预测,包括有限元分析、空间样条回归、粗糙度和融合LASSO-类型正则化、低秩矩阵完成和带有惩罚卡尔曼滤波器的状态空间模型。通过精心设计的结构,我们提出的模型可以使用凸优化进行分解和求解。我们还将研究在具有大量数据的商业房地产市场评估应用中实现更快计算的实现问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Niu, Di其他文献
FDML: A Collaborative Machine Learning Framework for Distributed Features
- DOI:
10.1145/3292500.3330765 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
Hu, Yaochen;Niu, Di;Zhou, Shengping - 通讯作者:
Zhou, Shengping
Random Network Coding in Peer-to-Peer Networks: From Theory to Practice
- DOI:
10.1109/jproc.2010.2091930 - 发表时间:
2011-03-01 - 期刊:
- 影响因子:20.6
- 作者:
Li, Baochun;Niu, Di - 通讯作者:
Niu, Di
Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling
- DOI:
10.1016/j.applthermaleng.2015.04.009 - 发表时间:
2015-06-25 - 期刊:
- 影响因子:6.4
- 作者:
Wang, Guilian;Niu, Di;Ding, Guifu - 通讯作者:
Ding, Guifu
BLCA prognostic model creation and validation based on immune gene-metabolic gene combination.
基于免疫基因-代谢基因组合的BLCA预后模型创建和验证。
- DOI:
10.1007/s12672-023-00853-6 - 发表时间:
2023-12-16 - 期刊:
- 影响因子:2.2
- 作者:
Yue, Shao-Yu;Niu, Di;Liu, Xian-Hong;Li, Wei-Yi;Ding, Ke;Fang, Hong-Ye;Wu, Xin-Dong;Li, Chun;Guan, Yu;Du, He-Xi - 通讯作者:
Du, He-Xi
Metabonomic analysis of cerebrospinal fluid in epilepsy.
- DOI:
10.21037/atm-22-1219 - 发表时间:
2022-04 - 期刊:
- 影响因子:0
- 作者:
Niu, Di;Sun, Pin;Zhang, Fenghua;Song, Fan - 通讯作者:
Song, Fan
Niu, Di的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Niu, Di', 18)}}的其他基金
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
- 批准号:
RGPIN-2019-04998 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
- 批准号:
RGPIN-2019-04998 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
Advanced Malware Detection Techniques based on Artificial Intelligence and Distributed Machine Learning
基于人工智能和分布式机器学习的先进恶意软件检测技术
- 批准号:
531722-2018 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Collaborative Research and Development Grants
Advanced Malware Detection Techniques based on Artificial Intelligence and Distributed Machine Learning
基于人工智能和分布式机器学习的先进恶意软件检测技术
- 批准号:
531722-2018 - 财政年份:2020
- 资助金额:
$ 4.37万 - 项目类别:
Collaborative Research and Development Grants
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
- 批准号:
RGPIN-2019-04998 - 财政年份:2020
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
- 批准号:
RGPIN-2019-04998 - 财政年份:2019
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
Advanced Malware Detection Techniques based on Artificial Intelligence and Distributed Machine Learning
基于人工智能和分布式机器学习的先进恶意软件检测技术
- 批准号:
531722-2018 - 财政年份:2019
- 资助金额:
$ 4.37万 - 项目类别:
Collaborative Research and Development Grants
Intelligent Internet-Scale Multimedia Storage and Delivery
智能互联网规模多媒体存储和传输
- 批准号:
436170-2013 - 财政年份:2018
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
Intelligent Internet-Scale Multimedia Storage and Delivery
智能互联网规模多媒体存储和传输
- 批准号:
436170-2013 - 财政年份:2017
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
Intelligent Internet-Scale Multimedia Storage and Delivery
智能互联网规模多媒体存储和传输
- 批准号:
436170-2013 - 财政年份:2016
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
协同无人机与背包激光雷达的阔叶林真实叶面积指数反演
- 批准号:42371382
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
面向真实监控场景的多源行人搜索技术研究
- 批准号:62372348
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向真实场景的多视图子空间聚类方法研究
- 批准号:62306006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向真实应用场景的Wi-Fi后向散射通信关键技术研究
- 批准号:62372374
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向真实世界的交互式终身学习行人重识别研究
- 批准号:62371208
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DESC: Type II: REFRESH: Revisiting Expanding FPGA Real-estate for Environmentally Sustainability Heterogeneous-Systems
合作研究:DESC:类型 II:REFRESH:重新审视扩展 FPGA 空间以实现环境可持续性异构系统
- 批准号:
2324865 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Standard Grant
Real Estate Portfolio Carbon Risk Score (CaRiS)
房地产投资组合碳风险评分 (CaRiS)
- 批准号:
10056105 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Small Business Research Initiative
The influence of city planning policies on the effectiveness of industrial heritage regeneration processes in UK cities with developed real estate mar
房地产市场发达的英国城市规划政策对工业遗产再生过程有效性的影响
- 批准号:
2887311 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Studentship
Collaborative Research: DESC: Type II: REFRESH: Revisiting Expanding FPGA Real-estate for Environmentally Sustainability Heterogeneous-Systems
合作研究:DESC:类型 II:REFRESH:重新审视扩展 FPGA 空间以实现环境可持续性异构系统
- 批准号:
2324864 - 财政年份:2023
- 资助金额:
$ 4.37万 - 项目类别:
Standard Grant
Cygnes Real: the first real-estate investment platform to use tokenisation, enabling fast, accessible and low cost fractional ownership of property
Cygnes Real:第一个使用代币化的房地产投资平台,实现快速、可访问且低成本的财产部分所有权
- 批准号:
10019107 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
Collaborative R&D