Intelligent Internet-Scale Multimedia Storage and Delivery

智能互联网规模多媒体存储和传输

基本信息

  • 批准号:
    436170-2013
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Video services, such as Youtube and Netflix, are enormously popular on the Internet nowadays. With the advent of datacenters, cloud computing and increased Internet bandwidth, video delivery is experiencing a major architectural change. As a typical Internet-scale video delivery system, Netflix hosts its content in Amazon Simple Storage Service (S3), which organizes a storage system spanning geographically distributed datacenters. The videos are then delivered to end users through multiple Content Delivery Networks (CDNs) as edge servers. Our grand goal in this proposal is to build intelligence into future video storage and delivery systems at the Internet scale by incorporating data-intensive decision making in computer networking. The proposed system will utilize various types of data collected from the network, including system traces, logs, user reports and even social information, for workload prediction and performance inference. The processed data will then be used to assist content placement, resource management, data transfers and load routing, which can be modelled as data-intensive optimization problems, at multiple levels in the video distribution hierarchy. The key challenges to be addressed include how to learn useful information from data, how to approach various combinatorial optimization problems required by the application, and especially, how to efficiently solve such data-intensive optimizations on-the-fly to satisfy application requirements. In order to scale to very large systems and a large amount of input data, we will particularly investigate novel distributed and parallel algorithms and computation paradigms, which either lead to decentralized decisions in the network or efficient parallel computation through Hadoop and cloud computing services. The proposed system will eventually integrate large-scale computer networking and traffic engineering with data-intensive computing and decision making at the application level. Our study will be based on a large amount of data collected from various video delivery and CDN companies. We aim to test our approaches in real network experiments involving PlanetLab nodes, Amazon EC2 datacenters and server clusters, depending on resource availability.**
Youtube 和 Netflix 等视频服务如今在互联网上非常流行。随着数据中心、云计算和互联网带宽的增加,视频传输正在经历重大的架构变化。作为典型的互联网规模视频传输系统,Netflix 将其内容托管在 Amazon Simple Storage Service (S3) 中,该服务组织了一个跨越地理分布的数据中心的存储系统。然后,视频通过作为边缘服务器的多个内容交付网络 (CDN) 交付给最终用户。我们在此提案中的宏伟目标是通过将数据密集型决策纳入计算机网络中,将智能构建到互联网规模的未来视频存储和传输系统中。所提出的系统将利用从网络收集的各种类型的数据(包括系统跟踪、日志、用户报告甚至社交信息)来进行工作负载预测和性能推断。然后,处理后的数据将用于协助内容放置、资源管理、数据传输和负载路由,这些可以在视频分发层次结构的多个级别上建模为数据密集型优化问题。要解决的关键挑战包括如何从数据中学习有用的信息,如何处理应用程序所需的各种组合优化问题,特别是如何有效地即时解决此类数据密集型优化以满足应用程序需求。为了扩展到非常大的系统和大量的输入数据,我们将特别研究新颖的分布式并行算法和计算范式,它们要么导致网络中的去中心化决策,要么通过 Hadoop 和云计算服务实现高效的并行计算。所提出的系统最终将把大规模计算机网络和交通工程与应用层面的数据密集型计算和决策相结合。我们的研究将基于从各个视频传输和 CDN 公司收集的大量数据。我们的目标是在涉及 PlanetLab 节点、Amazon EC2 数据中心和服务器集群的真实网络实验中测试我们的方法,具体取决于资源可用性。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Niu, Di其他文献

FDML: A Collaborative Machine Learning Framework for Distributed Features
Random Network Coding in Peer-to-Peer Networks: From Theory to Practice
  • DOI:
    10.1109/jproc.2010.2091930
  • 发表时间:
    2011-03-01
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    Li, Baochun;Niu, Di
  • 通讯作者:
    Niu, Di
BLCA prognostic model creation and validation based on immune gene-metabolic gene combination.
基于免疫基因-代谢基因组合的BLCA预后模型创建和验证。
  • DOI:
    10.1007/s12672-023-00853-6
  • 发表时间:
    2023-12-16
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Yue, Shao-Yu;Niu, Di;Liu, Xian-Hong;Li, Wei-Yi;Ding, Ke;Fang, Hong-Ye;Wu, Xin-Dong;Li, Chun;Guan, Yu;Du, He-Xi
  • 通讯作者:
    Du, He-Xi
Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling
  • DOI:
    10.1016/j.applthermaleng.2015.04.009
  • 发表时间:
    2015-06-25
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Wang, Guilian;Niu, Di;Ding, Guifu
  • 通讯作者:
    Ding, Guifu
A comparison of visual discomfort experienced by surgeons in wireless versus conventional endoscopy in laparoscopic surgery.
  • DOI:
    10.1097/cu9.0000000000000182
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Xu, Hanjiang;Niu, Di;Yang, Cheng;Hao, Zongyao;Liang, Chaozhao
  • 通讯作者:
    Liang, Chaozhao

Niu, Di的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Niu, Di', 18)}}的其他基金

Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
  • 批准号:
    RGPIN-2019-04998
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
  • 批准号:
    RGPIN-2019-04998
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Malware Detection Techniques based on Artificial Intelligence and Distributed Machine Learning
基于人工智能和分布式机器学习的先进恶意软件检测技术
  • 批准号:
    531722-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced Malware Detection Techniques based on Artificial Intelligence and Distributed Machine Learning
基于人工智能和分布式机器学习的先进恶意软件检测技术
  • 批准号:
    531722-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
  • 批准号:
    RGPIN-2019-04998
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed Optimization for Machine Learning on Decentralized Data and Features
基于分散数据和特征的机器学习分布式优化
  • 批准号:
    RGPIN-2019-04998
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Malware Detection Techniques based on Artificial Intelligence and Distributed Machine Learning
基于人工智能和分布式机器学习的先进恶意软件检测技术
  • 批准号:
    531722-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Analyzing real estate transaction and pricing data via statistical machine learning
通过统计机器学习分析房地产交易和定价数据
  • 批准号:
    479555-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Intelligent Internet-Scale Multimedia Storage and Delivery
智能互联网规模多媒体存储和传输
  • 批准号:
    436170-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Internet-Scale Multimedia Storage and Delivery
智能互联网规模多媒体存储和传输
  • 批准号:
    436170-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
移动互联网环境下大规模动态共乘匹配、行程与定价联合优化研究
  • 批准号:
    72071003
  • 批准年份:
    2020
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
应对大规模爆发疫情的新型互联网医疗核心技术与应用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:
    专项基金项目
大规模分布式电源接入能源互联网的三方谐波责任定量评估
  • 批准号:
    51777173
  • 批准年份:
    2017
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
基于多源测量数据的互联网大规模安全事件分类与诊断技术研究
  • 批准号:
    61602503
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Data-driven Intelligent Attack Detection in Multilateral, Large-Scale and Heterogeneous Internet of Things Environments
多边、大规模、异构物联网环境中数据驱动的智能攻击检测
  • 批准号:
    RGPIN-2020-04707
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven Intelligent Attack Detection in Multilateral, Large-Scale and Heterogeneous Internet of Things Environments
多边、大规模、异构物联网环境中数据驱动的智能攻击检测
  • 批准号:
    RGPIN-2020-04707
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
LifeBio-ALZ: AI driven digital biomarker engine leveraging natural conversation to widely scale accessibility for early detection and assessment of Alzheimers disease progression
LifeBio-ALZ:人工智能驱动的数字生物标记引擎,利用自然对话来广泛扩展可访问性,以早期检测和评估阿尔茨海默病的进展
  • 批准号:
    10381308
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
Data-driven Intelligent Attack Detection in Multilateral, Large-Scale and Heterogeneous Internet of Things Environments
多边、大规模、异构物联网环境中数据驱动的智能攻击检测
  • 批准号:
    RGPIN-2020-04707
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven Intelligent Attack Detection in Multilateral, Large-Scale and Heterogeneous Internet of Things Environments
多边、大规模、异构物联网环境中数据驱动的智能攻击检测
  • 批准号:
    DGECR-2020-00272
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了