Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
基本信息
- 批准号:RGPIN-2018-03974
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research is based on the interface between representation theory, algebraic geometry, low dimensional topology and mathematical physics. It centres around both the foundational theory and applications of studying a special class of non-commutative algebras. These algebras arise from the notion of deformation quantization: a commutative algebra can deform to an interesting non-commutative one, and one can study the representation theory of that algebra by considering the geometry of its classical limit. This approach is fundamental in the study of quantum mechanics (the Heisenberg uncertainty principle expresses the failure of commutativity), but also has a fruitful history in the study of Lie algebras.
The relevant class of algebraic varieties I consider are "symplectic singularities." Every symplectic singularity has an associated non-commutative algebra, which we call its "universal enveloping algebra," constructed using deformation quantization. These include the universal enveloping algebras of Lie algebras as a special case; one basic principle of my research is to study how statements about Lie algebras can be modified to hold in the general case.
Mathematical physics appears as a source of these algebras: certain special quantum field theories give us many examples of these algebras. The program I propose in this grant is to understand how the geometry of these singularities, the representation theory of their deformations, and the associated quantum field theories relate to each other, and can be applied in other areas such as combinatorics and topology.
My most important work over the past decade has been dedicated to the idea that these varieties appear in "dual pairs" that arise in physics. This cast the whole field in a new light, and understanding how properties of these varieties are related under duality has stimulated study of many different aspects of symplectic singularities. The connection between the representation theory and geometry of dual varieties is subtle, but this duality can be seen as a "geometrification'' and "categorification" of many dualities in mathematics, such as Schur-Weyl, rank-level and Gale duality.
Moving forward, the biggest question facing me is to understand better how these insights can be applied in mathematical physics, and conversely, how the ideas of physics can brought to bear on the mathematical questions of the proposal.
我的研究基于表示理论,代数几何形状,低维拓扑和数学物理学之间的界面。它围绕研究特殊类别的非共同代数的基础理论和应用。这些代数来自变形量化的概念:交换代数可以变形为有趣的非交通性,并且可以通过考虑其经典极限的几何形状来研究该代数的表示理论。这种方法在量子力学的研究中至关重要(海森堡不确定性原理表达了通勤性的失败),但在谎言代数的研究中也有富有成果的历史。
我认为相关的代数品种是“符号奇异性”。每个符号奇异性都有相关的非共同代数,我们称其为“通用包络代数”,该代数使用变形量化构建。其中包括谎言代数的普遍包围代数作为特殊情况;我的研究的一个基本原则是研究如何在一般情况下修改有关谎言代数的陈述以持有。
数学物理学似乎是这些代数的来源:某些特殊的量子场理论为我们提供了许多代数的例子。我在这笔赠款中提出的计划是了解这些奇异性的几何形状,其变形的表示理论以及相关的量子场理论如何相互关联,并且可以应用于组合和拓扑等其他领域。
在过去的十年中,我最重要的工作一直致力于这样的想法,即这些品种出现在物理学中出现的“双对”中。这将以新的方式投射整个领域,并了解这些品种在二元性下如何相关的特性刺激了对符号奇异性的许多不同方面的研究。表示理论与双重品种的几何形状之间的联系是微妙的,但是这种二元性可以看作是数学中许多二元性的“几何化”和“分类”,例如Schur-Weyl,等级级别,等级级别和大风二元性。
向前迈进,我面临的最大问题是更好地了解如何将这些见解应用于数学物理学,相反,物理学的思想如何在建议的数学问题上带来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Webster, Ben其他文献
Waiting with Bated Breath: Opportunistic Orientation to Human Odor in the Malaria Mosquito, Anopheles gambiae, is Modulated by Minute Changes in Carbon Dioxide Concentration
- DOI:
10.1007/s10886-014-0542-x - 发表时间:
2015-01-01 - 期刊:
- 影响因子:2.3
- 作者:
Webster, Ben;Lacey, Emerson S.;Carde, Ring T. - 通讯作者:
Carde, Ring T.
Bed bug aggregation on dirty laundry: a mechanism for passive dispersal
- DOI:
10.1038/s41598-017-11850-5 - 发表时间:
2017-09-28 - 期刊:
- 影响因子:4.6
- 作者:
Hentley, William T.;Webster, Ben;Siva-Jothy, Michael T. - 通讯作者:
Siva-Jothy, Michael T.
Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae
- DOI:
10.1007/s10886-008-9510-7 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:2.3
- 作者:
Webster, Ben;Bruce, Toby;Pickett, John - 通讯作者:
Pickett, John
Heisenberg and Kac–Moody categorification
海森堡和卡卡穆迪分类
- DOI:
10.1007/s00029-020-00602-5 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Brundan, Jonathan;Savage, Alistair;Webster, Ben - 通讯作者:
Webster, Ben
Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid
- DOI:
10.1016/j.anbehav.2009.11.028 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:2.5
- 作者:
Webster, Ben;Bruce, Toby;Hardie, Jim - 通讯作者:
Hardie, Jim
Webster, Ben的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Webster, Ben', 18)}}的其他基金
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
- 批准号:
RGPIN-2018-03974 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
- 批准号:
RGPIN-2018-03974 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
- 批准号:
RGPIN-2018-03974 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
- 批准号:
RGPIN-2018-03974 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向大跨桥梁施工监控的激光-图像融合几何形态感知方法研究
- 批准号:52308306
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于信息几何的超大规模MIMO传输理论方法研究
- 批准号:62371125
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
复流形上蒙日-安培型方程理论以及几何问题的研究
- 批准号:12371078
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于透视几何约束一致性的跨域刚体单目位姿估计
- 批准号:12302252
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨形方法在拓扑、几何和动力系统中的应用
- 批准号:12371067
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Models for accumulation of evidence through sequences in a navigation-based, decision-making task
在基于导航的决策任务中通过序列积累证据的模型
- 批准号:
10608293 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
CAREER: Geometric Techniques for Topological Graph Algorithms
职业:拓扑图算法的几何技术
- 批准号:
2237288 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Investigation of the quantitative intracranial aneurysm wall enhancement and geometric features associated with aneurysm volume growth
颅内动脉瘤壁定量增强和与动脉瘤体积生长相关的几何特征的研究
- 批准号:
10415665 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别: