CAREER: Geometric Techniques for Topological Graph Algorithms

职业:拓扑图算法的几何技术

基本信息

  • 批准号:
    2237288
  • 负责人:
  • 金额:
    $ 65.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Classical techniques for designing graph algorithms do not assume structures of input graphs and therefore suffer from worst-case guarantees by artificial instances. Graphs arising in practical applications, including logistics and planning, very large-scale integration (VLSI) design, image processing, and robot navigation, often have nice topological structures: they can be drawn on the plane without (or with a few) edge crossings. Can these structures be exploited for algorithmic advantage? Research on this question has produced powerful algorithmic techniques. Nevertheless, algorithm designers have exploited these techniques to their limits over the past two decades. This project aims to develop a new class of techniques inspired by geometry counterparts that could overcome the limitations of the existing ones. The central idea is to study the metric space induced by shortest path distances of topological graphs and translate algorithmic ideas from discrete geometry to solve problems. In addition to potential impacts on practical applications, this project outlines specific plans to train students at both graduate and undergraduate levels; the practical aspects of this project would particularly be appealing to students from different backgrounds. The project also plans to disseminate state-of-the-art algorithm design techniques for topological graphs. This project will focus on two specific research thrusts. The first studies graph embeddings for designing approximation algorithms. This direction is inspired by the success of embedding techniques for general metrics. The goal is to develop new relaxations of the traditional metric embedding by taking topology into account, specifically focusing on designing approximation algorithms. The second thrust concerns different geometric structures of topological graphs. Developing new geometric structures has resulted in recent breakthroughs in topological graph algorithms. The project proposes an in-depth investigation of geometric structures, including various types of decompositions and dimensions inspired by those studied in geometry. Both thrusts complement each other well: understanding these structures gives insights into what it takes to construct the embeddings and vice versa. This project also includes a number of algorithmic problems that can be settled by geometric techniques for which the traditional techniques fail.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计图形算法的经典技术不假定输入图的结构,因此受到人工实例保证的最坏情况。在实用应用中产生的图形,包括物流和计划,非常大规模集成(VLSI)设计,图像处理和机器人导航,通常具有不错的拓扑结构:可以在飞机上绘制它们,而无需(或具有几个)边缘交叉口。这些结构是否可以利用算法优势?对这个问题的研究产生了强大的算法技术。尽管如此,在过去的二十年中,算法设计师将这些技术利用了它们的极限。该项目旨在开发一种新的技术,灵感来自几何形状,这些技术可能会克服现有的技术的局限性。核心思想是研究拓扑图的最短路径距离引起的度量空间,并将算法思想从离散的几何形状转化为解决问题。除了对实际应用的潜在影响外,该项目还概述了培训研究生和本科级别的学生的具体计划;该项目的实际方面特别吸引了来自不同背景的学生。该项目还计划分发拓扑图的最新算法设计技术。该项目将重点放在两个特定的研究推力上。第一批研究图嵌入了用于设计近似算法的嵌入。这个方向的灵感来自嵌入技术对通用指标的成功。目的是通过考虑拓扑结构来发展传统度量嵌入的新放松,专门针对设计近似算法。第二个推力涉及拓扑图的不同几何结构。开发新的几何结构已导致拓扑图算法最近的突破。该项目提出了对几何结构的深入研究,包括受几何形状研究启发的各种类型的分解和尺寸。两者都很好地补充了彼此:​​了解这些结构可以洞悉构造嵌入所需的内容,反之亦然。该项目还包括许多算法问题,这些问题可以通过几何技术解决,传统技术失败。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估标准来通过评估来获得支持的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Covering Planar Metrics (and Beyond): O(1) Trees Suffice
覆盖平面度量(及以上):O(1) 棵树就足够了
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hung Le其他文献

Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana
Validation of Prognostic Scores in Patients With Metastatic Urothelial Cancer Enrolling in Phase I Targeted Therapy or Next Generation Immunotherapy Trials.
参加 I 期靶向治疗或下一代免疫治疗试验的转移性尿路上皮癌患者的预后评分验证。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    O. Alhalabi;A. Hahn;P. Msaouel;F. Meric;N. Wilson;A. Naing;S. Piha;Janku Filip;S. Pant;T. Yap;D. Hong;S. Fu;D. Karp;Kimberly Beltran;E. Campbell;Hung Le;M. Campbell;A. Shah;N. Tannir;A. Siefker;Jianjun Gao;J. Roszik;V. Subbiah
  • 通讯作者:
    V. Subbiah
Reliable Spanners: Locality-Sensitive Orderings Strike Back
可靠的扳手:区域敏感订单的反击
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arnold Filtser;Hung Le
  • 通讯作者:
    Hung Le
Self-Assttentive Associative Memory
自我肯定联想记忆
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hung Le;T. Tran;S. Venkatesh
  • 通讯作者:
    S. Venkatesh
Building a Knowledge Graph of Vietnam Tourism from Text
从文本构建越南旅游知识图谱
  • DOI:
    10.1007/978-981-33-4069-5_1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Do;Hung Le
  • 通讯作者:
    Hung Le

Hung Le的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hung Le', 18)}}的其他基金

NSF-BSF: Small: AF: Towards a Unified Theory of Spanners
NSF-BSF:小:AF:迈向扳手的统一理论
  • 批准号:
    2121952
  • 财政年份:
    2021
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Standard Grant

相似国自然基金

面向大跨桥梁施工监控的激光-图像融合几何形态感知方法研究
  • 批准号:
    52308306
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于信息几何的超大规模MIMO传输理论方法研究
  • 批准号:
    62371125
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于透视几何约束一致性的跨域刚体单目位姿估计
  • 批准号:
    12302252
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复流形上蒙日-安培型方程理论以及几何问题的研究
  • 批准号:
    12371078
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
轨形方法在拓扑、几何和动力系统中的应用
  • 批准号:
    12371067
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Novel Cardiac MRI-Based Predictors for Tetralogy of Fallot: Deformation, Kinematic, and Geometric Analyses
基于心脏 MRI 的新型法洛四联症预测因子:变形、运动学和几何分析
  • 批准号:
    10352409
  • 财政年份:
    2021
  • 资助金额:
    $ 65.55万
  • 项目类别:
Novel Cardiac MRI-Based Predictors for Tetralogy of Fallot: Deformation, Kinematic, and Geometric Analyses
基于心脏 MRI 的新型法洛四联症预测因子:变形、运动学和几何分析
  • 批准号:
    10689013
  • 财政年份:
    2021
  • 资助金额:
    $ 65.55万
  • 项目类别:
CAREER: Modern nonconvex optimization for machine learning: foundations of geometric and scalable techniques
职业:机器学习的现代非凸优化:几何和可扩展技术的基础
  • 批准号:
    1846088
  • 财政年份:
    2019
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Continuing Grant
CAREER: Geometric Techniques for Big Data Medical Imaging
职业:大数据医学成像的几何技术
  • 批准号:
    1651825
  • 财政年份:
    2017
  • 资助金额:
    $ 65.55万
  • 项目类别:
    Continuing Grant
Characterization of the arenavirus glycoprotein complex and mechanism of fusion
沙粒病毒糖蛋白复合物的表征和融合机制
  • 批准号:
    9021590
  • 财政年份:
    2015
  • 资助金额:
    $ 65.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了