CAREER: Modern nonconvex optimization for machine learning: foundations of geometric and scalable techniques

职业:机器学习的现代非凸优化:几何和可扩展技术的基础

基本信息

  • 批准号:
    1846088
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-15 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Mathematical optimization lies at the heart of machine learning (ML) and artificial intelligence (AI) algorithms. Key challenges herein are to decide what criteria to optimize, and what algorithms to use for performing the optimization. These challenges underlie the motivation for the present project. More specifically, this project seeks to make progress on three fundamental topics in optimization for ML: (i) theoretical foundations for a rich new class of optimization problems that can be solved efficiently (i.e., in a computationally tractable manner); (ii) a set of algorithms that apply to large-scale optimization problems in machine learning (e.g., for accelerating the training of neural networks); and (iii) theory that seeks to understand and explain why do neural networks succeed in practice. By focusing on topics of foundational importance, this project should spur a variety of followup research that deepends the connection of ML and AI with both mathematics and the applied sciences. More broadly, the this project may have a lasting societal impact too, primarily because of (i) its focus on optimization particularly relevant to ML and AI; (2) the non-traditional application domains it connects with (e.g., synthetic biology); and (3) because the investigator is in an environment that fosters such impact (namely, the Institute for Data, Systems, and Society (IDSS), a cross-disciplinary institute at MIT whose mission to drive solutions to problems of societal relevance). Finally, the project has an education centric focus; it involves intellectual and professional development of students, as well as development of curricular material based on the topics of research covered herein.This project lays out an ambitious agenda to develop foundational theory for geometric optimization, large-scale nonconvex optimization, and deep neural networks. The research on geometric optimization (which is a powerful new subclass of nonconvex optimization), is originally motivated by applications in ML and statistics; however, it stands to have a broader impact across all disciplines that consume optimization. The investigator seeks to develop a theory of polynomial time optimization for a class strictly larger than usual convex optimization problems, and thereby endow practitioners with new polynomial time tools and models; if successful, this investigation could open an entire subarea of research and applications. Beyond geometric optimization, the project also focuses on large-scale nonconvex optimization and on the theory of optimization and generalization for deep learning. Within these topics, the project will address key theoretical challenges, develop scalable new algorithms that could greatly speed up neural network training, and also make progress that reduces the gap between the theory and real-world practice of nonconvex optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学优化是机器学习 (ML) 和人工智能 (AI) 算法的核心。这里的关键挑战是决定优化什么标准,以及使用什么算法来执行优化。这些挑战是本项目的动机的基础。更具体地说,该项目力求在机器学习优化的三个基本主题上取得进展:(i)可以有效解决(即以计算上易于处理的方式)丰富的新型优化问题的理论基础; (ii) 一组适用于机器学习中大规模优化问题的算法(例如,用于加速神经网络的训练); (iii) 旨在理解和解释神经网络为何在实践中取得成功的理论。通过关注具有基础重要性的主题,该项目应该会刺激各种后续研究,加深机器学习和人工智能与数学和应用科学的联系。更广泛地说,该项目也可能产生持久的社会影响,主要是因为(i)它专注于与机器学习和人工智能尤其相关的优化; (2) 与之相关的非传统应用领域(例如合成生物学); (3) 因为研究者所处的环境能够产生这种影响(即数据、系统和社会研究所 (IDSS),这是麻省理工学院的一个跨学科研究所,其使命是推动社会相关问题的解决方案)。最后,该项目以教育为中心;它涉及学生的智力和专业发展,以及基于本文所涵盖的研究主题的课程材料的开发。该项目制定了一个雄心勃勃的议程,以发展几何优化、大规模非凸优化和深度神经网络的基础理论。几何优化(非凸优化的一个强大的新子类)的研究最初是由机器学习和统计学中的应用推动的;然而,它将对所有消耗优化的学科产生更广泛的影响。研究者寻求针对比通常的凸优化问题严格更大的类别开发多项式时间优化理论,从而为实践者提供新的多项式时间工具和模型;如果成功,这项调查可能会开启整个研究和应用领域。除了几何优化之外,该项目还关注大规模非凸优化以及深度学习的优化和泛化理论。在这些主题中,该项目将解决关键的理论挑战,开发可大大加快神经网络训练的可扩展新算法,并在缩小非凸优化的理论与现实世界实践之间的差距方面取得进展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time Varying Regression with Hidden Linear Dynamics
  • DOI:
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Horia Mania;A. Jadbabaie;Devavrat Shah;S. Sra
  • 通讯作者:
    Horia Mania;A. Jadbabaie;Devavrat Shah;S. Sra
Geodesically-convex optimization for averaging partially observed covariance matrices
  • DOI:
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Yger;S. Chevallier;Quentin Barthélemy;S. Sra
  • 通讯作者:
    F. Yger;S. Chevallier;Quentin Barthélemy;S. Sra
Beyond Worst-Case Analysis in Stochastic Approximation: Moment Estimation Improves Instance Complexity
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Zhang;Hongzhou Lin;Subhro Das;S. Sra;A. Jadbabaie
  • 通讯作者:
    J. Zhang;Hongzhou Lin;Subhro Das;S. Sra;A. Jadbabaie
Three Operator Splitting with a Nonconvex Loss Function
  • DOI:
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Yurtsever;Varun Mangalick;S. Sra
  • 通讯作者:
    A. Yurtsever;Varun Mangalick;S. Sra
Open Problem: Can Single-Shuffle SGD be Better than Reshuffling SGD and GD?
开放问题:单次洗牌 SGD 能否比重新洗牌 SGD 和 GD 更好?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suvrit Sra其他文献

Suvrit Sra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suvrit Sra', 18)}}的其他基金

TRIPODS+X:RES:Collaborative Research: Learning with Expert-In-The-Loop for Multimodal Weakly Labeled Data and an Application to Massive Scale Medical Imaging
TRIPODS X:RES:协作研究:与专家在环学习多模态弱标记数据及其在大规模医学成像中的应用
  • 批准号:
    1839258
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
BIGDATA: F: Towards Automating Data Analysis: Interpretable, Interactive, and Scalable Learning via Discrete Probability
BIGDATA:F:迈向自动化数据分析:通过离散概率进行可解释、交互式和可扩展的学习
  • 批准号:
    1741341
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

面向现代网络化系统攻防博弈的自适应阻断问题研究
  • 批准号:
    72301291
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
  • 批准号:
    42371164
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
面向现代深度学习模型的随机二阶优化算法及理论研究
  • 批准号:
    12301398
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
内蒙古草原区粪生菌孢现代过程及其在第四纪古生态研究中的应用
  • 批准号:
    42301170
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
现代通信工程中新型序列的设计与构造
  • 批准号:
    12301429
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Connecting Histories, Connecting Heritage: Early Modern Cities and Their Afterlives
连接历史、连接遗产:早期现代城市及其来世
  • 批准号:
    MR/X036200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
  • 批准号:
    2340777
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CREST HBCU-RISE: Advancing Theoretical Artificial Intelligence Infrastructure for Modern Data Science Challenges
CREST HBCU-RISE:推进理论人工智能基础设施应对现代数据科学挑战
  • 批准号:
    2409093
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了