CAREER: Modern nonconvex optimization for machine learning: foundations of geometric and scalable techniques

职业:机器学习的现代非凸优化:几何和可扩展技术的基础

基本信息

  • 批准号:
    1846088
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-15 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Mathematical optimization lies at the heart of machine learning (ML) and artificial intelligence (AI) algorithms. Key challenges herein are to decide what criteria to optimize, and what algorithms to use for performing the optimization. These challenges underlie the motivation for the present project. More specifically, this project seeks to make progress on three fundamental topics in optimization for ML: (i) theoretical foundations for a rich new class of optimization problems that can be solved efficiently (i.e., in a computationally tractable manner); (ii) a set of algorithms that apply to large-scale optimization problems in machine learning (e.g., for accelerating the training of neural networks); and (iii) theory that seeks to understand and explain why do neural networks succeed in practice. By focusing on topics of foundational importance, this project should spur a variety of followup research that deepends the connection of ML and AI with both mathematics and the applied sciences. More broadly, the this project may have a lasting societal impact too, primarily because of (i) its focus on optimization particularly relevant to ML and AI; (2) the non-traditional application domains it connects with (e.g., synthetic biology); and (3) because the investigator is in an environment that fosters such impact (namely, the Institute for Data, Systems, and Society (IDSS), a cross-disciplinary institute at MIT whose mission to drive solutions to problems of societal relevance). Finally, the project has an education centric focus; it involves intellectual and professional development of students, as well as development of curricular material based on the topics of research covered herein.This project lays out an ambitious agenda to develop foundational theory for geometric optimization, large-scale nonconvex optimization, and deep neural networks. The research on geometric optimization (which is a powerful new subclass of nonconvex optimization), is originally motivated by applications in ML and statistics; however, it stands to have a broader impact across all disciplines that consume optimization. The investigator seeks to develop a theory of polynomial time optimization for a class strictly larger than usual convex optimization problems, and thereby endow practitioners with new polynomial time tools and models; if successful, this investigation could open an entire subarea of research and applications. Beyond geometric optimization, the project also focuses on large-scale nonconvex optimization and on the theory of optimization and generalization for deep learning. Within these topics, the project will address key theoretical challenges, develop scalable new algorithms that could greatly speed up neural network training, and also make progress that reduces the gap between the theory and real-world practice of nonconvex optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学优化是机器学习(ML)和人工智能(AI)算法的核心。这里的主要挑战是决定要优化的标准以及用于执行优化的算法。这些挑战是本项目的动机。更具体地说,该项目旨在在ML优化的三个基本主题上取得进展:(i)可以有效解决的丰富新的优化问题的理论基础(即以计算障碍方式); (ii)一组适用于机器学习中大规模优化问题的算法(例如,用于加速神经网络的培训); (iii)试图理解和解释为什么神经网络在实践中成功的理论。通过关注基础重要性的主题,该项目应刺激各种后续研究,从而深深地了解ML和AI与数学和应用科学的联系。更广泛地说,该项目也可能具有持久的社会影响,主要是因为(i)专注于与ML和AI特别相关的优化; (2)它与(例如,合成生物学)连接的非传统应用域; (3)由于研究人员处于促进这种影响的环境(即,数据,系统和社会研究所(IDSS),MIT的跨学科研究所,其使命是推动解决社会问题问题的解决方案)。最后,该项目以教育为重点。它涉及学生的智力和专业发展,以及基于本文涵盖的研究主题的课程材料的开发。本项目提出了一个雄心勃勃的议程,以开发几何优化,大规模非凸优化和深层神经网络的基础理论。几何优化的研究(这是一个强大的非凸优化的新子类),最初是由ML和统计数据中的应用进行的。但是,它在所有消费优化的学科中都具有更大的影响。研究者试图针对严格比通常更大的凸优化问题的班级开发多项式时间优化的理论,从而赋予了从业者使用新的多项式时间工具和模型。如果成功的话,这项调查可能会开放整个研究和应用的子区域。除了几何优化外,该项目还侧重于大规模的非凸优化以及深度学习的优化和概括理论。在这些主题中,该项目将解决关键的理论挑战,开发可扩展的新算法,这些算法可以极大地加快神经网络训练的速度,并取得了进步,从而减少了非convex优化的理论和现实世界实践之间的差距。该奖项反映了NSF的法定任务,并通过使用基金会的智力效果和广泛的评估来进行评估,并通过评估值得评估。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time Varying Regression with Hidden Linear Dynamics
  • DOI:
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Horia Mania;A. Jadbabaie;Devavrat Shah;S. Sra
  • 通讯作者:
    Horia Mania;A. Jadbabaie;Devavrat Shah;S. Sra
Geodesically-convex optimization for averaging partially observed covariance matrices
  • DOI:
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Yger;S. Chevallier;Quentin Barthélemy;S. Sra
  • 通讯作者:
    F. Yger;S. Chevallier;Quentin Barthélemy;S. Sra
Beyond Worst-Case Analysis in Stochastic Approximation: Moment Estimation Improves Instance Complexity
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Zhang;Hongzhou Lin;Subhro Das;S. Sra;A. Jadbabaie
  • 通讯作者:
    J. Zhang;Hongzhou Lin;Subhro Das;S. Sra;A. Jadbabaie
Three Operator Splitting with a Nonconvex Loss Function
  • DOI:
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Yurtsever;Varun Mangalick;S. Sra
  • 通讯作者:
    A. Yurtsever;Varun Mangalick;S. Sra
Open Problem: Can Single-Shuffle SGD be Better than Reshuffling SGD and GD?
开放问题:单次洗牌 SGD 能否比重新洗牌 SGD 和 GD 更好?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suvrit Sra其他文献

Suvrit Sra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suvrit Sra', 18)}}的其他基金

TRIPODS+X:RES:Collaborative Research: Learning with Expert-In-The-Loop for Multimodal Weakly Labeled Data and an Application to Massive Scale Medical Imaging
TRIPODS X:RES:协作研究:与专家在环学习多模态弱标记数据及其在大规模医学成像中的应用
  • 批准号:
    1839258
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
BIGDATA: F: Towards Automating Data Analysis: Interpretable, Interactive, and Scalable Learning via Discrete Probability
BIGDATA:F:迈向自动化数据分析:通过离散概率进行可解释、交互式和可扩展的学习
  • 批准号:
    1741341
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

现代通信工程中新型序列的设计与构造
  • 批准号:
    12301429
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向政府治理现代化的政务舆情信息萃取、价值发现及辅助决策研究
  • 批准号:
    72374191
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
基于传统桥梁营造智慧的现代木结构模块化集成建筑(T-MiC)设计体系
  • 批准号:
    52378023
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
清胰汤抑制肠道菌群代谢物TMAO介导的ROS/TXNIP/NLRP3治疗急性胰腺炎的机制研究诠释“清下”法现代内涵
  • 批准号:
    82304943
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
现代表面风化作用对条带状铁建造的改造机制和过程
  • 批准号:
    42302217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Connecting Histories, Connecting Heritage: Early Modern Cities and Their Afterlives
连接历史、连接遗产:早期现代城市及其来世
  • 批准号:
    MR/X036200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
  • 批准号:
    2340777
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CREST HBCU-RISE: Advancing Theoretical Artificial Intelligence Infrastructure for Modern Data Science Challenges
CREST HBCU-RISE:推进理论人工智能基础设施应对现代数据科学挑战
  • 批准号:
    2409093
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了