Novel Cardiac MRI-Based Predictors for Tetralogy of Fallot: Deformation, Kinematic, and Geometric Analyses
基于心脏 MRI 的新型法洛四联症预测因子:变形、运动学和几何分析
基本信息
- 批准号:10352409
- 负责人:
- 金额:$ 17.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAdverse eventAffectAgeArrhythmiaBiomedical EngineeringCardiacCardiac developmentCardiologyCardiovascular systemCessation of lifeCharacteristicsClinicalClinical ResearchComputer ModelsDataData AnalyticsData SetDeath RateDevelopmentEFRACEnvironmentExcess MortalityFailureFundingGeometryGoalsGuidelinesHeart DiseasesHeart failureImageInterdisciplinary StudyInterventionLeadLearningLeftLeft Ventricular Ejection FractionLeft Ventricular FunctionMachine LearningMagnetic Resonance ImagingMeasuresMechanicsMentorsMissionModelingMorbidity - disease rateMotionNational Heart, Lung, and Blood InstituteObstructionOperative Surgical ProceduresOutcomePatient-Focused OutcomesPatientsPediatric cardiologyPerformancePopulationPositioning AttributePredictive ValueProspective StudiesProspective cohortPublic HealthPulmonary Valve InsufficiencyRandomized Controlled TrialsRecording of previous eventsResearchResearch DesignResearch PersonnelRight Ventricular HypertrophyRiskShapesTechniquesTestingTetralogy of FallotTimeTrainingVentricularVentricular FibrillationVentricular TachycardiaWorkadverse outcomebasecardiac magnetic resonance imagingcareerclinical practicecohortcomputer sciencecongenital heart disorderdesignearly experienceexperienceimage processingimprovedimproved outcomekinematicsmultidisciplinarynoveloutcome predictionpredict clinical outcomepredicting responseprematureprospectivepulmonary valve replacementrepairedresponders and non-respondersresponseskillsstandard of carestructural heart diseasetoolvector
项目摘要
Five to 10% of patients with repaired tetralogy of Fallot (rTOF) die before age 30, but our ability to predict
which patients will experience death, ventricular tachycardia, and ventricular fibrillation (DVTF) is limited. The
optimal timing of pulmonary valve replacement (PVR), which may delay DVTF, is also not clear. The current
best predictors of DVTF and guidance for PVR timing rely on “traditional” measures such as right ventricular
volume and ejection fraction, which are derived from cardiac MRI (CMR). However, even the best DVTF
models have limited predictive power, and these “traditional” volumetric measures fail to predict appropriate
response to PVR for 30-40% of patients. This proposal aims to address the critical need for CMR based-
metrics that correlate with DVTF and predict response to PVR better than traditional ventricular volumetrics.
This will be accomplished through the development of ventricular deformation-, kinematic-, and geometry-
based mechanics metrics for rTOF patients from routinely acquired, standard of care CMR datasets, which
would allow rapid implementation in clinical practice. The critical need will be addressed through two Specific
Aims. Specific Aim 1: Develop and evaluate novel CMR-based predictors of clinical outcomes in patients with
rTOF. Specific Aim 2: Prospectively assess ventricular geometry-based predictors of response to pulmonary
valve replacement in rTOF patients. The rationale is that if computational modeling techniques can generate
metrics that outperform traditional markers, they can be used to change current patient management with the
eventual goal to delay DVTF. The failure to develop improved metrics will lead to continued excess mortality
and suboptimal clinical outcomes for patients with rTOF. The combination of cross-sectional and longitudinal
approaches allows a more comprehensive assessment of CMR metrics in a population where randomized
controlled trials are not feasible. This work has the potential for rapid implementation and thus to mark a
paradigm shift in the use of computational modeling in clinical cardiology.
The candidate’s career goal is to be an independent investigator leading multidisciplinary research teams to
develop new, more accurate, and easily applied outcome predictors for congenital heart disease (CHD). This
would place him at the nexus of clinical pediatric cardiology, biomedical engineering, and computer science. To
achieve this goal, he will learn about machine learning and kinematic analyses, their strengths and pitfalls, and
the data characteristics needed for these analyses. He will learn how to bring his findings to clinical practice
and design studies using the newly developed metrics. He will then design R01-funded research to
prospectively assess the performance of the ventricular mechanical metrics to guide PVR and predict DVTF.
This will all be accomplished through a dedicated, multi-disciplinary mentor/advisor team, a supportive
academic environment, and didactic and hands-on training. At the completion of this training, the applicant
plans to be a world leader in the application of advanced imaging analytics for congenital heart disease.
5%至10%的法尔洛特修复四症患者(RTOF)在30岁之前死亡,但我们的预测能力
哪些患者将经历死亡,心室心动过速和心室纤颤(DVTF)是有限的。
可能延迟DVTF的肺动脉瓣置换(PVR)的最佳时机也不清楚。电流
DVTF的最佳预测指标和PVR时机指导取决于“传统”措施,例如右心室
体积和射血分数,源自心脏MRI(CMR)。但是,即使是最好的DVTF
模型的预测能力有限,这些“传统”体积措施无法预测适当的
30-40%的患者对PVR的反应。该建议旨在满足基于CMR的关键需求 -
与传统的心室体积相比,与DVTF相关并预测对PVR的反应的指标比传统的响应更好。
这将通过心室变形,运动学和几何形状的发展来实现。
来自经常获得的护理标准CMR数据集的RTOF患者的基于机械指标
将允许在临床实践中快速实施。关键需求将通过两个特定
目标。特定目标1:开发和评估新型基于CMR的基于CMR的临床结果预测因子
rtof。特定目标2:前瞻性评估基于心室几何反应的肺反应预测指标
RTOF患者的瓣膜更换。理由是,如果计算建模技术可以生成
超过传统标记的指标,可以用来改变当前患者管理
最终延迟DVTF的目标。无法开发改进的指标将导致持续过多的死亡率
RTOF患者的临床结果和次优临床结果。横截面和纵向的组合
方法可以在人群中对CMR指标进行更全面的评估
对照试验不可行。这项工作具有快速实施的潜力,从而标记
在临床心脏病学中使用计算建模的范式转移。
候选人的职业目标是成为领导多学科研究团队的独立研究员
为先天性心脏病(CHD)开发新的,更准确,更容易应用的结果预测因子。
将他置于临床儿科心脏病学,生物医学工程和计算机科学的联系。到
实现这一目标,他将了解机器学习和运动学分析,其优势和陷阱,以及
这些分析所需的数据特征。他将学习如何将他的发现带入临床实践
以及使用新开发的指标的设计研究。然后,他将设计为R01资助的研究
前瞻性评估心室机械指标的性能,以指导PVR并预测DVTF。
这一切都将通过一个专门的,多学科的导师/顾问团队来完成,这是一个支持的
学术环境以及教学和动手培训。培训完成后,申请人
计划成为先天性心脏病的先进成像分析应用的世界领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Animesh Tandon其他文献
Animesh Tandon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Animesh Tandon', 18)}}的其他基金
Novel Cardiac MRI-Based Predictors for Tetralogy of Fallot: Deformation, Kinematic, and Geometric Analyses
基于心脏 MRI 的新型法洛四联症预测因子:变形、运动学和几何分析
- 批准号:
10689013 - 财政年份:2021
- 资助金额:
$ 17.27万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development and implementation of a digital sleep intervention for preschoolers in foster care
为寄养中的学龄前儿童开发和实施数字睡眠干预
- 批准号:
10724304 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
Transovarial transmission of yersinia pestis in fleas
跳蚤中鼠疫耶尔森氏菌的跨卵巢传播
- 批准号:
10727534 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
Screening and Brief Intervention for Prescription Stimulant Misuse and Diversion: Refining and Piloting a Curriculum for College Health Providers
针对处方兴奋剂滥用和转移的筛查和简短干预:为大学医疗服务提供者完善和试点课程
- 批准号:
10731122 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
MIND Foods and Aerobic Training in Black Adults with HTN: An ADRD Prevention Pilot RCT (MAT)
MIND 食品和患有 HTN 的黑人成人的有氧训练:ADRD 预防试点随机对照试验 (MAT)
- 批准号:
10585366 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别: