Synthesis of Graphene Nanomaterials and Development of Their Multifunctional Polymer Nanocomposites

石墨烯纳米材料的合成及其多功能聚合物纳米复合材料的开发

基本信息

  • 批准号:
    555586-2020
  • 负责人:
  • 金额:
    $ 13.21万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Graphene nanomaterials are monolayers of carbon atoms, featuring notable physical properties, such as high electrical conductivity, thermal conductivity, mechanical strength, and thermal and chemical resistance. These properties, coupled with its large surface area, have made graphene an attractive base material in a myriad of scientific research fields as well as industrial applications, such as energy, electronics, defense, automotive, aerospace, construction, drug delivery, diagnostic, among others. The primary precursor material for the synthesis of graphene is graphite, which is a native element mineral found in igneous rocks. Indeed, graphite is a stack of numerous layers of graphene attached to each other with molecular forces. To synthesize graphene, the layers of graphite should get exfoliated. ZEN Graphene Solutions Ltd. ("ZEN"), our industry partner in this project, has discovered a large and very rare igneous-related graphite deposit in Northern Ontario called the Albany Deposit [www.zengraphene.com]. This resource may allow ZEN to produce commercial quantities of graphene for use in high-value, large-scale advanced applications. To use graphene in industrial applications, ZEN must generate the knowledge and expertise to convert graphite to the graphene derivatives at an industrial scale. As such, this research project seeks to generate the knowledge to synthesize graphene from ZEN's graphite using cost-effective, environmentally-friendly techniques and scale-up the process. The multifunctional properties of the graphene propose it as an outstanding nanomaterial to improve the physical properties of polymers. Polymers feature superior characteristics such as lightweight, low cost, easy processability, corrosion resistance, and improved design options. These properties propose polymers as versatile futuristic substitutions for commonly used materials, such as metals and ceramics, for advanced applications. Nevertheless, pristine polymers lack the required physical properties to accomplish this mission. The marriage of graphene with polymers results in the development of advanced multifunctional graphene/polymer nanocomposites enjoying the inherent properties of polymers woven with the multifunctionality of the graphene. To this end, this research project also seeks to incorporate the synthesized engineered graphene into polymers to improve their physical properties, including electrical, thermal, mechanical, and acoustic properties. The developed graphene/polymer nanocomposites will be shaped using compression molding and 3D printing techniques for performance testing. This research project will train HQP (1 postdoctoral fellow and 5 PhD students) with expertise and hands-on experience in Graphene Nanomaterials Synthesis and Characterization, Polymer Processing and 3D Printing, and Multifunctional Polymer Nanocomposites Development and Characterization. Such a broad range of expertise will shape the competent HQP with interdisciplinary backgrounds, who will be able to practice in numerous sectors in Canada, thereby enhancing the competitiveness of the Canada's economy. The success of this project would open new avenues for various sectors in Canada, such as defense, aerospace, and automotive, to develop new technologies based on engineered graphene nanomaterials and their multifunctional polymer nanocomposites. This project would benefit many Canadian academics, as it will allow us to synthesize and customize graphene nanomaterials and their polymer nanocomposites for academics in different scientific fields rather than necessitating the purchase of commercial materials. The results of this project could potentially create new jobs for Canadians. For instance, ZEN estimates that the successful production of graphene out of graphite at an industrial scale could potentially lead to 300 new jobs in Northern Ontario.
石墨烯纳米材料是单层碳原子,具有显着的物理特性,例如高导电性、导热性、机械强度以及耐热性和耐化学性。这些特性加上其大表面积,使石墨烯成为众多科学研究领域和工业应用中有吸引力的基础材料,例如能源、电子、国防、汽车、航空航天、建筑、药物输送、诊断等。其他的。合成石墨烯的主要前体材料是石墨,它是火成岩中发现的天然元素矿物。事实上,石墨是由无数层石墨烯通过分子力相互连接而成的堆叠体。为了合成石墨烯,石墨层应该被剥离。 我们在该项目中的行业合作伙伴 ZEN Graphene Solutions Ltd.(“ZEN”)在安大略省北部发现了一个大型且非常罕见的与火成岩相关的石墨矿床,称为奥尔巴尼矿床 [www.zengraphene.com]。该资源可能使 ZEN 能够生产商业数量的石墨烯,用于高价值、大规模的先进应用。为了在工业应用中使用石墨烯,ZEN 必须积累知识和专业知识,以工业规模将石墨转化为石墨烯衍生物。因此,该研究项目旨在利用经济高效、环保的技术从 ZEN 的石墨中合成石墨烯,并扩大工艺规模。 石墨烯的多功能特性使其成为一种出色的纳米材料,可以改善聚合物的物理性能。聚合物具有轻质、低成本、易于加工、耐腐蚀和改进的设计选项等优异特性。这些特性表明聚合物可以作为金属和陶瓷等常用材料的多功能未来替代品,用于先进的应用。然而,原始聚合物缺乏完成这一任务所需的物理特性。石墨烯与聚合物的结合导致了先进的多功能石墨烯/聚合物纳米复合材料的开发,该复合材料具有与石墨烯的多功能性编织的聚合物的固有特性。为此,该研究项目还寻求将合成的工程石墨烯融入聚合物中,以改善其物理性能,包括电、热、机械和声学性能。所开发的石墨烯/聚合物纳米复合材料将使用压缩成型和 3D 打印技术进行成型,以进行性能测试。 该研究项目将培训 HQP(1 名博士后研究员和 5 名博士生)在石墨烯纳米材料合成和表征、聚合物加工和 3D 打印以及多功能聚合物纳米复合材料开发和表征方面的专业知识和实践经验。如此广泛的专业知识将塑造具有跨学科背景的称职总部,他们将能够在加拿大的众多行业中执业,从而提高加拿大经济的竞争力。该项目的成功将为加拿大国防、航空航天和汽车等各个部门开辟新的途径,开发基于工程石墨烯纳米材料及其多功能聚合物纳米复合材料的新技术。该项目将使许多加拿大学者受益,因为它将允许我们为不同科学领域的学者合成和定制石墨烯纳米材料及其聚合物纳米复合材料,而无需购买商业材料。该项目的结果可能会为加拿大人创造新的就业机会。例如,ZEN 估计,以工业规模成功地用石墨生产石墨烯可能会为安大略省北部带来 300 个新就业机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arjmand, Mohammad其他文献

Mapping 3D Printability of Ionically Cross-Linked Cellulose Nanocrystal Inks: Architecting from Nano- to Macroscale Structures
  • DOI:
    10.1021/acs.biomac.2c01241
  • 发表时间:
    2022-12-22
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Amini, Majed;Kamkar, Milad;Arjmand, Mohammad
  • 通讯作者:
    Arjmand, Mohammad
Graphene oxide/polyaniline-based microwave split-ring resonator: A versatile platform towards ammonia sensing
  • DOI:
    10.1016/j.jhazmat.2021.126283
  • 发表时间:
    2021-06-08
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Javadian-Saraf, Aida;Hosseini, Ehsan;Arjmand, Mohammad
  • 通讯作者:
    Arjmand, Mohammad
Electrical conductivity of electrospun nanofiber mats of polyamide 6/polyaniline coated with nitrogen-doped carbon nanotubes
  • DOI:
    10.1016/j.matdes.2017.12.052
  • 发表时间:
    2018-03-05
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Ferreira Santos, Joao Paulo;Arjmand, Mohammad;Sundararaj, Uttandaraman
  • 通讯作者:
    Sundararaj, Uttandaraman
Paracentral Acute Middle Maculopathy and Central Retinal Venous Occlusion following Electrical Injury.
电损伤后的旁中心急性中黄斑病变和视网膜中央静脉阻塞。
  • DOI:
    10.1155/2022/3699667
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khazaei, Sahel;Shariati, Mehrdad Motamed;Shoeibi, Naser;Arjmand, Mohammad;Hosseini, Seyedeh Maryam
  • 通讯作者:
    Hosseini, Seyedeh Maryam
Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water
  • DOI:
    10.1016/j.chemosphere.2020.128466
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Ahmadijokani, Farhad;Tajahmadi, Shima;Arjmand, Mohammad
  • 通讯作者:
    Arjmand, Mohammad

Arjmand, Mohammad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arjmand, Mohammad', 18)}}的其他基金

Advanced Materials and Polymer Engineering
先进材料与高分子工程
  • 批准号:
    CRC-2018-00234
  • 财政年份:
    2022
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Canada Research Chairs
Advanced 3D Printed Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding
先进的 3D 打印导电聚合物纳米复合材料可屏蔽电磁干扰
  • 批准号:
    RGPIN-2020-03914
  • 财政年份:
    2022
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Discovery Grants Program - Individual
Synthesis of Graphene Nanomaterials and Development of Their Multifunctional Polymer Nanocomposites
石墨烯纳米材料的合成及其多功能聚合物纳米复合材料的开发
  • 批准号:
    555586-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Alliance Grants
Advanced Materials And Polymer Engineering
先进材料与高分子工程
  • 批准号:
    CRC-2018-00234
  • 财政年份:
    2021
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Canada Research Chairs
Plastic Recycling Network towards Affordable 3D Printed Homes
塑料回收网络打造经济实惠的 3D 打印房屋
  • 批准号:
    570420-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Alliance Grants
Advanced electromagnetic shields for unmanned ground and aerial vehicle platforms
适用于无人地面和飞行器平台的先进电磁屏蔽
  • 批准号:
    566894-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Alliance Grants
Feeders and Laser Micrometer for Existing State-of-the-Art Twin-Screw Extruder
适用于现有最先进双螺杆挤出机的喂料器和激光测微计
  • 批准号:
    RTI-2022-00097
  • 财政年份:
    2021
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Research Tools and Instruments
Advanced 3D Printed Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding
先进的 3D 打印导电聚合物纳米复合材料可屏蔽电磁干扰
  • 批准号:
    RGPIN-2020-03914
  • 财政年份:
    2021
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Materials and Polymer Engineering
先进材料与高分子工程
  • 批准号:
    CRC-2018-00234
  • 财政年份:
    2020
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Canada Research Chairs
Advanced 3D Printed Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding
先进的 3D 打印导电聚合物纳米复合材料可屏蔽电磁干扰
  • 批准号:
    DGECR-2020-00459
  • 财政年份:
    2020
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

精准合成碳纳米锥团簇分子
  • 批准号:
    91961113
  • 批准年份:
    2019
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
单分散过渡金属碳酸盐/石墨烯纳米复合储钠材料的精准合成、协同增效及储能机理研究
  • 批准号:
    21905208
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
用原位液体室透射电镜技术研究纳米复合超级电容器电极材料的自组装合成机理
  • 批准号:
    21875066
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
盐模板法原位制备石墨烯/纳米金属复合材料及其储能机制研究
  • 批准号:
    51801153
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
功能化石墨烯固载单原子金属的可控合成及电化学无酶传感研究
  • 批准号:
    21874031
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

Synthesis of Graphene Nanomaterials and Development of Their Multifunctional Polymer Nanocomposites
石墨烯纳米材料的合成及其多功能聚合物纳米复合材料的开发
  • 批准号:
    555586-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Alliance Grants
Synthesis of Graphene Nanomaterials and Development of Their Multifunctional Polymer Nanocomposites
石墨烯纳米材料的合成及其多功能聚合物纳米复合材料的开发
  • 批准号:
    555586-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Alliance Grants
Green Synthesis of Graphene-Based Nanomaterials and Graphene Quantum Dots from Unique Albany Graphite
利用独特的奥尔巴尼石墨绿色合成石墨烯基纳米材料和石墨烯量子点
  • 批准号:
    543434-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Collaborative Research and Development Grants
Green Synthesis of Graphene-Based Nanomaterials and Graphene Quantum Dots from Unique Albany Graphite
利用独特的奥尔巴尼石墨绿色合成石墨烯基纳米材料和石墨烯量子点
  • 批准号:
    543434-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Collaborative Research and Development Grants
Green Synthesis of Graphene-Based Nanomaterials and Graphene Quantum Dots from Unique Albany Graphite
利用独特的奥尔巴尼石墨绿色合成石墨烯基纳米材料和石墨烯量子点
  • 批准号:
    543434-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 13.21万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了