Atomic-Scale Electronics
原子级电子学
基本信息
- 批准号:RGPIN-2018-05969
- 负责人:
- 金额:$ 4.66万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The progression of CMOS transistors and technology is expected to reach 5nm gate length by the year 2030. At these dimensions and beyond, many of the properties of bulk materials, including the bandgap, the energy band diagrams, and carrier mobilities, undergo dramatic changes and tunneling dominates. Coincidentally, room-temperature tunneling-based coupled quantum-dot (QD) devices, envisioned for quantum computing (QC), will also become feasible at these dimensions. Although integration density has continued to follow Moore's law due to feature size shrinking and the introduction of 3D transistor structures such as the FinFET, MOSFETs are fast approaching their scaling limits. This will affect the future evolution of both computing and wireless communication, the pillars of today's revolution in data science, machine learning and the internet of things, which rely on ever-increasing computational power and data rates, and on ambient sensing. To continue computing speed and functionality improvement beyond the end of CMOS, it is critical that a variety of channel materials and qubit structures suitable for integration in a production silicon platform be thoroughly investigated for large volume and low-cost, scalable QC qubits and integrated circuits.***This proposal addresses (i) the continued scaling of computational power by exploring novel atomic-scale quantum-computing (QC) hardware in CMOS foundry processes, which can be integrated on the same die with classical CMOS logic and millimeter-wave electronics, and (ii) transceiver architectures exploiting the un-chartered 140-300 GHz frequency band for qubit spin control/readout, ambient sensing, instrumentation, and wireless communications at over 100 Gb/s.***The proposed qubit ICs consist of coupled-QD electron and hole spin qubits, placed in the atomic-scale channel of multi-gate n- and p-MOSFETs, and of 60-240GHz spin control and spin readout circuits integrated on the same die. As a radical breakthrough, the fabricated qubits will feature mode energy level splitting on the order of 0.25-1 meV corresponding to Rabi frequencies in the 60-240GHz range, suitable for operation at 312 degrees Kelvin, two orders of magnitude higher than today's qubits. The tuned mm-wave circuits allow for 10-20ps spin control pulses which help to filter out wideband thermal noise and make the proposed qubits and QC logic more tolerant of short spin coherence and relaxation times. Thermal noise filtering may lead to even higher temperature operation for a given energy-level splitting.
CMOS晶体管和技术的进展预计到2030年将达到5nm的栅极长度。在这些尺寸及以后,许多散装材料的特性,包括带隙,能量带图和载体迁移率,都会发生巨大的变化和隧道的巨大变化。巧合的是,在这些维度上,基于量子计算的设备(QC)设想的基于室温的耦合量子点(QD)设备也将在这些维度上变得可行。尽管由于特征大小的缩小和引入3D晶体管结构(例如FinFET),MOSFET迅速接近其缩放限制,尽管集成密度继续遵循摩尔定律。这将影响计算和无线通信的未来演变,当今数据科学革命,机器学习和物联网的支柱,这些革命依赖于越来越多的计算能力和数据速率以及环境感知。要继续计算CMO之后的计算速度和功能提高,至关重要的是,要对适合在生产硅平台中集成的各种频道材料和量子结构进行彻底研究,以进行大量和低成本的,可稳定的QC量子和集成的电路。 processes, which can be integrated on the same die with classical CMOS logic and millimeter-wave electronics, and (ii) transceiver architectures exploiting the un-chartered 140-300 GHz frequency band for qubit spin control/readout, ambient sensing, instrumentation, and wireless communications at over 100 Gb/s.***The proposed qubit ICs consist of coupled-QD electron and hole spin qubits, placed in the多门N和P-MOSFET的原子尺度通道,以及在同一模具上集成的60-240GHZ自旋控制和自旋读数电路。作为一个根本的突破,制造的量子位将以0.25-1 MEV的阶面模式分裂,对应于60-240GHz范围内的Rabi频率,适用于312摄氏度的操作,比当今的量子尺高两个数量级。调整后的MM波电路允许10-20PS自旋对照脉冲,有助于滤除宽带热噪声,并使建议的量子位和QC逻辑更耐用短自旋连贯性和放松时间。对于给定的能量级分裂,热噪声过滤可能会导致更高的温度操作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Voinigescu, Sorin其他文献
Voinigescu, Sorin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Voinigescu, Sorin', 18)}}的其他基金
Monolithic Quantum Processors in Production FDSOI and FinFET CMOS Technologies
生产中的单片量子处理器 FDSOI 和 FinFET CMOS 技术
- 批准号:
RTI-2023-00256 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Research Tools and Instruments
Atomic-Scale Electronics
原子级电子学
- 批准号:
RGPIN-2018-05969 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Atomic-Scale Electronics
原子级电子学
- 批准号:
RGPIN-2018-05969 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Atomic-Scale Electronics
原子级电子学
- 批准号:
RGPIN-2018-05969 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Silicon quantum computing hardware in nanoscale CMOS
纳米级 CMOS 硅量子计算硬件
- 批准号:
506293-2017 - 财政年份:2019
- 资助金额:
$ 4.66万 - 项目类别:
Strategic Projects - Group
Atomic-Scale Electronics
原子级电子学
- 批准号:
RGPIN-2018-05969 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Cryogenic probestation for mm-wave monolithic quantum computing integrated circuits
毫米波单片量子计算集成电路低温探测
- 批准号:
RTI-2019-00550 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Research Tools and Instruments
Silicon quantum computing hardware in nanoscale CMOS
纳米级 CMOS 硅量子计算硬件
- 批准号:
506293-2017 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Strategic Projects - Group
2-D Crystal Electronics for Energy-Efficient Terabit Communication Links
用于节能太比特通信链路的二维晶体电子器件
- 批准号:
262288-2013 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Silicon quantum computing hardware in nanoscale CMOS
纳米级 CMOS 硅量子计算硬件
- 批准号:
506293-2017 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Strategic Projects - Group
相似国自然基金
超大规模集成GPU系统的可靠性分析及优化研究
- 批准号:62372207
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向超大规模复杂虚拟网络的高精度轻量级网络遥测机制研究
- 批准号:62372053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向大规模图预训练模型的知识迁移关键问题研究
- 批准号:62376129
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大规模网络数据中邻接矩阵特征根与特征向量的研究
- 批准号:12371278
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
面向大规模强化学习任务的预测控制理论与方法研究
- 批准号:62376179
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Atomic-Scale Electronics
原子级电子学
- 批准号:
RGPIN-2018-05969 - 财政年份:2022
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Atomic-Scale Electronics
原子级电子学
- 批准号:
RGPIN-2018-05969 - 财政年份:2021
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Atomic-Scale Electronics
原子级电子学
- 批准号:
RGPIN-2018-05969 - 财政年份:2020
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Atomic-Scale Electronics
原子级电子学
- 批准号:
RGPIN-2018-05969 - 财政年份:2018
- 资助金额:
$ 4.66万 - 项目类别:
Discovery Grants Program - Individual
Atomic-scale electronics linking microscopic atomic/molecular switches and macroscopic electrical transport
连接微观原子/分子开关和宏观电传输的原子级电子学
- 批准号:
17K19052 - 财政年份:2017
- 资助金额:
$ 4.66万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)