Explicit class field theory and the Birch and Swinnerton-Dyer conjecture

显式类场论以及伯奇和斯温纳顿-戴尔猜想

基本信息

  • 批准号:
    RGPIN-2018-04062
  • 负责人:
  • 金额:
    $ 4.15万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

My research program will revolve around two central open questions in number theory: firstly, the construction of global points on elliptic curves with the goal of better understanding the Birch and Swinnerton-Dyer conjecture, and secondly, Hilbert's twelfth problem and explicit class field theory, of which the analytic construction of class fields of real quadratic fields is the simplest prototypical special case. I intend to build on the significant progress I have achieved towards these questions in the last five years, most notably, (1) my work with Victor Rotger on p-adic deformations of diagonal cycles in the Chow groups of triple products of modular curves and Kuga-Sato varieties, which has led in particular to the proof of new cases of the Birch and Swinnerton-Dyer conjecture in analytic rank zero, for elliptic curves over Q twisted by ring class characters of real quadratic fields, and (2) my more recent work with Jan Vonk in the past year, which has revealed a previously unexpected theory of singular moduli for real quadratic fields enjoying striking parallels with the classical theory of complex multiplication. Both works offer complementary and promising avenues for better understanding the construction of Stark-Heegner points that I introduced around 2000, whose shoring up has been my primary research focus since that time. My work with Victor revolves around objects which we call "generalised Kato classes": global classes in the Selmer groups of elliptic curves (over appropriate number fields, class fields of real quadratic fields being a particularly tantalising special case) arising from p-adic deformations of special geometric objects in Chow groups or higher Chow groups of Shimura varieties. Our ongoing efforts aim to compare these classes with the images of Stark-Heegner points under the connecting homomorphism of Kummer theory. While not sufficient to establish the global nature of Stark-Heegner points, which are defined analytically as purely local objects, relating them to global Selmer classes is a decisive step in that direction. From an ostensibly quite different angle, my discovery with Jan that Stark-Heegner points can be recast in the broader framework of a (still conjectural) theory of complex multiplication for real quadratic fields in which the role of meromorphic modular functions is played by what we call "rigid meromorphic cocycles", seems to be full of promise for future progress. Indeed, we now dispose of convincing strategies for making some parts of this picture unconditional, potentially leading to a satisfying solution to Hilbert's twelfth problem for real quadratic fields based on extending fundamental work of Gross-Zagier and of Kudla-Rapoport-Yang to a p-adic setting. That an eventual extension of Kudla's program to the p-adics could offer a key to Hilbert's twelfth problem is perhaps the most significant insight to emerge from my recent work with Jan Vonk.**
我的研究计划将围绕数论中的两个核心开放问题:首先,椭圆曲线上全局点的构造,目的是更好地理解 Birch 和 Swinnerton-Dyer 猜想,其次,希尔伯特的第十二个问题和显式类域论,其中实二次域的类域的解析构造是最简单的原型特例。我打算在过去五年中在这些问题上取得的重大进展的基础上再接再厉,最值得注意的是,(1)我与 Victor Rotger 合作研究模曲线三重积的 Chow 群中对角循环的 p-adic 变形Kuga-Sato 簇,特别是在解析零阶中证明了 Birch 和 Swinnerton-Dyer 猜想的新案例,用于 Q 上由实环类特征扭曲的椭圆曲线二次域,以及(2)去年我与 Jan Vonk 的最新研究,揭示了一种先前意想不到的实二次域奇异模理论,与经典的复数乘法理论有着惊人的相似之处。 这两部作品为更好地理解我在 2000 年左右引入的 Stark-Heegner 点的构造提供了互补且有前景的途径,从那时起,对 Stark-Heegner 点的支撑一直是我的主要研究重点。 我与 Victor 的合作围绕着我们称之为“广义加藤类”的对象:由 p 进变形产生的椭圆曲线 Selmer 群中的全局类(在适当的数域上,实二次域的类域是一个特别诱人的特殊情况)松狮犬群或志村品种的高级松狮犬群中的特殊几何物体。我们正在进行的努力旨在将这些类与库默理论的连接同态下的 Stark-Heegner 点的图像进行比较。虽然不足以建立 Stark-Heegner 点的全局性质(这些点在分析上被定义为纯粹的局部对象),但将它们与全局 Selmer 类联系起来是朝这个方向迈出的决定性一步。从表面上完全不同的角度来看,我与 Jan 的发现 Stark-Heegner 点可以在实二次域复乘法(仍然是猜想的)理论的更广泛框架中重新构建,其中亚纯模函数的作用是由我们所扮演的称为“刚性亚态共环”,似乎对未来的进步充满希望。事实上,我们现在处理了令人信服的策略,使这幅图的某些部分成为无条件的,有可能在将 Gross-Zagier 和 Kudla-Rapoport-Yang 的基础工作扩展到 p 的基础上,为实二次域的希尔伯特第十二个问题提供令人满意的解决方案。 -adic设置。 Kudla 的程序最终扩展到 p-adics 可能为希尔伯特第十二个问题提供关键,这也许是我最近与 Jan Vonk 合作中得出的最重要的见解。 **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darmon, Henri其他文献

The Derived Hecke Algebra for Dihedral Weight One Forms
二面体权重一式的导出赫克代数
  • DOI:
    10.1307/mmj/20217221
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Darmon, Henri;Harris, Michael;Rotger, Victor;Venkatesh, Akshay
  • 通讯作者:
    Venkatesh, Akshay
Generalised Heegner cycles and the complex Abel–Jacobi map
广义海格纳循环和复杂的阿贝尔雅可比图
  • DOI:
    10.1007/s00209-020-02603-8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bertolini, Massimo;Darmon, Henri;Lilienfeldt, David;Prasanna, Kartik
  • 通讯作者:
    Prasanna, Kartik

Darmon, Henri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darmon, Henri', 18)}}的其他基金

Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2022
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2021
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2020
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2018
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Stark-Heegner points and algebraic cycles
Stark-Heegner 点和代数环
  • 批准号:
    155499-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Stark-Heegner points and algebraic cycles
Stark-Heegner 点和代数环
  • 批准号:
    155499-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
  • 批准号:
    32300291
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PAR1介导的MHC class I表达探讨血府逐瘀汤逆转肺癌免疫逃逸的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无细胞生物合成S-腺苷甲硫氨酸自由基依赖的Class B甲基转移酶的系统构筑及应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于班级环境、媒体暴力与MAOA基因多态性对留守儿童攻击行为的风险预警模型构建
  • 批准号:
    71804191
  • 批准年份:
    2018
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目
时空 g-class Ornstein-Uhlenbeck 型过程的统计推断问题研究
  • 批准号:
    11801355
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modular Cocycles, Explicit Class Field Theory, and Quantum Designs
模块化共循环、显式类场论和量子设计
  • 批准号:
    2302514
  • 财政年份:
    2023
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Continuing Grant
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2022
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2021
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2020
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2018
  • 资助金额:
    $ 4.15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了