Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points

Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统

基本信息

  • 批准号:
    155499-2013
  • 负责人:
  • 金额:
    $ 4.08万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Around twelve years ago I discovered a completely explicit, but for now entirely conjectural, construction of global points on elliptic curves, which I called "Stark-Heegner points". In the simplest non-trivial setting, these points are expected to be defined over abelian extensions of real quadratic fields and would therefore contribute to our understanding of "explicit class field theory" for such fields. The main objective of this Discovery Grant proposal is to give an unconditional construction of the global cohomology classes in Selmer groups of elliptic curves that ought to arise from Stark-Heegner points via the connecting homomorphism of Kummer theory. The key tools in this construction are two new types of Euler systems arising from p-adic deformations of Gross-Kudla-Schoen diagonal cycles and Beilinson-Flach elements which I have been exploring with my collaborators (most importantly, Victor Rotger and Massimo Bertolini) since 2010. These two Euler systems are a natural generalisation of Kato's Euler system of Beilinson elements, and I refer to all three as "Euler systems of Garrett-Rankin-Selberg type" because of the key role played by the formulae of Garrett and Rankin-Selberg in relating them to special values of L-functions. The study of these Euler systems has already led my collaborators and me to new cases of the Birch and Swinnerton-Dyer conjecture in the spirit of the fundamental early results of Coates and Wiles. Most relevant to the project at hand is the finiteness of components of Mordell-Weil groups of modular elliptic curves over Q attached to characters of real quadratic fields when the associated L-function is non-zero at the central point. This new inroad into the Birch and Swinnerton-Dyer for abelian characters of real quadratic fields in "analytic rank zero" raises the hope that extensions of the method will lead to the desired information about the mysterious Stark-Heegner points, corresponding to cases of the Birch and Swinnerton-Dyer conjecture "in analytic rank one".
大约十二年前,我发现了一种完全明确但目前完全是推测的椭圆曲线上全局点的构造,我将其称为“Stark-Heegner 点”。在最简单的非平凡设置中,这些点预计将在实二次域的阿贝尔扩展上定义,因此有助于我们理解此类域的“显式类域论”。这项发现资助提案的主要目标是无条件构造 Selmer 椭圆曲线群中的全局上同调类,这些椭圆曲线应该通过 Kummer 理论的连接同态从 Stark-Heegner 点产生。这种构造的关键工具是两种新型欧拉系统,它们源自 Gross-Kudla-Schoen 对角线循环的 p-adic 变形和 Beilinson-Flach 元素,我一直在与我的合作者(最重要的是 Victor Rotger 和 Massimo Bertolini)一起探索这些元素。自 2010 年以来。这两个欧拉系统是加藤贝林森元素欧拉系统的自然推广,我将这三个系统称为“欧拉系统” Garrett-Rankin-Selberg 类型”,因为 Garrett 和 Rankin-Selberg 公式在将它们与 L 函数的特殊值联系起来方面发挥了关键作用。对这些欧拉系统的研究已经使我和我的合作者本着科茨和怀尔斯早期基本结果的精神得出了伯奇和斯温纳顿-戴尔猜想的新案例。与当前项目最相关的是当相关的 L 函数在中心点非零时,Q 上的模椭圆曲线的 Mordell-Weil 群的分量的有限性附加到实二次域的特征。这种对“解析零阶”实二次域阿贝尔特征的 Birch 和 Swinnerton-Dyer 的新进展提出了希望,即该方法的扩展将导致有关神秘 Stark-Heegner 点的所需信息,对应于以下情况伯奇和斯温纳顿-戴尔猜想“处于分析第一级”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darmon, Henri其他文献

The Derived Hecke Algebra for Dihedral Weight One Forms
二面体权重一式的导出赫克代数
  • DOI:
    10.1307/mmj/20217221
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Darmon, Henri;Harris, Michael;Rotger, Victor;Venkatesh, Akshay
  • 通讯作者:
    Venkatesh, Akshay
Generalised Heegner cycles and the complex Abel–Jacobi map
广义海格纳循环和复杂的阿贝尔雅可比图
  • DOI:
    10.1007/s00209-020-02603-8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bertolini, Massimo;Darmon, Henri;Lilienfeldt, David;Prasanna, Kartik
  • 通讯作者:
    Prasanna, Kartik

Darmon, Henri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darmon, Henri', 18)}}的其他基金

Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2022
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2021
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2020
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2019
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit class field theory and the Birch and Swinnerton-Dyer conjecture
显式类场论以及伯奇和斯温纳顿-戴尔猜想
  • 批准号:
    RGPIN-2018-04062
  • 财政年份:
    2018
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Euler Systems of Garrett-Rankin-Selberg type and Stark-Heegner points
Garrett-Rankin-Selberg 型和 Stark-Heegner 点的欧拉系统
  • 批准号:
    155499-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Stark-Heegner points and algebraic cycles
Stark-Heegner 点和代数环
  • 批准号:
    155499-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual
Stark-Heegner points and algebraic cycles
Stark-Heegner 点和代数环
  • 批准号:
    155499-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

国际应用系统分析研究学会2023暑期青年科学家项目
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    4.5 万元
  • 项目类别:
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
  • 批准号:
    12305031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
角茴香花粉配置策略对花粉精准传递和交配系统的影响
  • 批准号:
    32360084
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
高速铁路信号控制系统网络安全威胁分析与态势预警研究
  • 批准号:
    62301461
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑异质性、交互性、层次性的医联体系统效率评价理论、方法及应用
  • 批准号:
    72371232
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
  • 批准号:
    2337598
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Continuing Grant
CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
  • 批准号:
    2338480
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Continuing Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Standard Grant
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
  • 批准号:
    2338798
  • 财政年份:
    2024
  • 资助金额:
    $ 4.08万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了