Methods to improve the reliability of wearable sensor gait data.

提高可穿戴传感器步态数据可靠性的方法。

基本信息

  • 批准号:
    RGPIN-2019-04374
  • 负责人:
  • 金额:
    $ 3.35万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Biomechanical gait analysis is one of the most ubiquitous research methods for analysing sport performance or evaluating pathologic movement patterns. Our previous Discovery grant, and Discovery Accelerator Supplement award, developed novel methods to improve the accuracy and repeatability of gait kinematic data through the development of novel statistical methods and new software programs. Building on the success of this research, and based on significant advances in wearable sensor technology over the past few years, we now embark on the unique research challenge of moving our laboratory out into the real-world and redefining biomechanical gait research.*** Wearable sensors, such as accelerometers, gyroscopes, and magnetometers, are portable and affordable and are quickly becoming a common alternative for biomechanics gait research. However, as the field of biomechanics begins to embrace the use of wearable sensors for research purposes, several limitations needs to be addressed and foundational research must be established. The objective of this research program is to ensure that wearable sensor data are valid, reliable and repeatable based on novel statistical methods. The overarching hypothesis of the research program described here is that the inability to control many extrinsic factors (e.g. temperature, terrain, changes in inclination, etc.) during real-world data collections will significantly reduce the day-to-day reliability of wearable sensor data and subsequently affect our ability to measure valid biomechanical gait patterns.*** This main hypothesis will be evaluated, and novel solutions introduced, by focusing on three Specific Aims involving original and innovative statistical methods. Aim 1 will focus on developing new methods for identifying gait events, Aim 2 will focus on new segmentation and feature extraction methods that can influence overall classification accuracy, and Aim 3 will establish the number of data sessions necessary for reliable measurements of gait patterns.*** This novel research program is at the forefront of merging the fields of data science and gait biomechanics to analyze large quantities of biomechanical data, explore unstructured or complex data sets, and develop prediction models that will produce new insights. Our scientific approach will capitalize on our well-established NSERC-funded gait analysis and wearable sensor research and we expect to develop novel methods that will serve as the foundation for future biomechanics research. Now as we begin our newly awarded NSERC CREATE Wearable Training and Research Collaboration (We-TRAC) training program, the current Discovery Grant research program serves to ensure that our HQP and NSE researchers have access to the best tools. These tools will ultimately improve our progress in using wearable sensors for gait biomechanics research in real-world settings. **
生物力学步态分析是分析运动表现或评估病理运动模式最普遍的研究方法之一。 我们之前的 Discovery 资助和 Discovery Accelerator 补充奖开发了新方法,通过开发新颖的统计方法和新的软件程序来提高步态运动学数据的准确性和可重复性。 基于这项研究的成功,并基于过去几年可穿戴传感器技术的重大进步,我们现在开始迎接独特的研究挑战,将我们的实验室转移到现实世界并重新定义生物力学步态研究。***加速度计、陀螺仪和磁力计等可穿戴传感器便携且价格实惠,正迅速成为生物力学步态研究的常见替代品。 然而,随着生物力学领域开始采用可穿戴传感器进行研究,需要解决一些限制并建立基础研究。该研究计划的目标是基于新颖的统计方法确保可穿戴传感器数据有效、可靠和可重复。 这里描述的研究计划的总体假设是,在现实世界的数据收集过程中无法控制许多外在因素(例如温度、地形、倾斜度变化等)将显着降低可穿戴传感器的日常可靠性数据并随后影响我们测量有效生物力学步态模式的能力。*** 将通过关注涉及原始和创新统计方法的三个具体目标来评估这一主要假设,并引入新颖的解决方案。 目标 1 将重点开发用于识别步态事件的新方法,目标 2 将重点关注可影响整体分类准确性的新分割和特征提取方法,目标 3 将建立可靠测量步态模式所需的数据会话数量。* ** 这项新颖的研究计划处于融合数据科学和步态生物力学领域的前沿,以分析大量生物力学数据,探索非结构化或复杂的数据集,并开发将产生新见解的预测模型。 我们的科学方法将利用我们由 NSERC 资助的完善的步态分析和可穿戴传感器研究,我们期望开发新的方法,作为未来生物力学研究的基础。 现在,当我们开始新授予的 NSERC CREATE 可穿戴培训和研究合作 (We-TRAC) 培训计划时,当前的发现资助研究计划将确保我们的 HQP 和 NSE 研究人员能够获得最好的工具。 这些工具最终将提高我们在现实环境中使用可穿戴传感器进行步态生物力学研究的进展。 **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ferber, Reed其他文献

Use of subject-specific models to detect fatigue-related changes in running biomechanics: a random forest approach.
  • DOI:
    10.3389/fspor.2023.1283316
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Dimmick, Hannah L.;van Rassel, Cody R.;Macinnis, Martin J.;Ferber, Reed
  • 通讯作者:
    Ferber, Reed
Support vector machines for detecting age-related changes in running kinematics
  • DOI:
    10.1016/j.jbiomech.2010.09.031
  • 发表时间:
    2011-02-03
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fukuchi, Reginaldo K.;Eskofier, Bjoern M.;Ferber, Reed
  • 通讯作者:
    Ferber, Reed
Changes in multi-segment foot biomechanics with a heat-mouldable semi-custom foot orthotic device
  • DOI:
    10.1186/1757-1146-4-18
  • 发表时间:
    2011-06-21
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ferber, Reed;Benson, Brittany
  • 通讯作者:
    Benson, Brittany
Strengthening of the Hip and Core Versus Knee Muscles for the Treatment of Patellofemoral Pain: A Multicenter Randomized Controlled Trial
  • DOI:
    10.4085/1062-6050-49.3.70
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Ferber, Reed;Bolgla, Lori;Hamstra-Wright, Karrie
  • 通讯作者:
    Hamstra-Wright, Karrie
Kinematic gait patterns in healthy runners: A hierarchical cluster analysis
  • DOI:
    10.1016/j.jbiomech.2015.09.025
  • 发表时间:
    2015-11-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Phinyomark, Angkoon;Osis, Sean;Ferber, Reed
  • 通讯作者:
    Ferber, Reed

Ferber, Reed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ferber, Reed', 18)}}的其他基金

Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE for the Wearable Technology Research and Collaboration (We-TRAC) training program
NSERC CREATE 可穿戴技术研究与合作 (We-TRAC) 培训计划
  • 批准号:
    511166-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Training Experience
Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2021
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE for the Wearable Technology Research and Collaboration (We-TRAC) training program
NSERC CREATE 可穿戴技术研究与合作 (We-TRAC) 培训计划
  • 批准号:
    511166-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Training Experience
Methods to improve the reliability of wearable sensor gait data.
提高可穿戴传感器步态数据可靠性的方法。
  • 批准号:
    RGPIN-2019-04374
  • 财政年份:
    2020
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE for the Wearable Technology Research and Collaboration (We-TRAC) training program
NSERC CREATE 可穿戴技术研究与合作 (We-TRAC) 培训计划
  • 批准号:
    511166-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Training Experience
Building predictive models of joint loading using integrated motion capture and inertial measurement technologies.
使用集成运动捕捉和惯性测量技术构建关节载荷的预测模型。
  • 批准号:
    RTI-2019-00169
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Research Tools and Instruments
NSERC CREATE for the Wearable Technology Research and Collaboration (We-TRAC) training program
NSERC CREATE 可穿戴技术研究与合作 (We-TRAC) 培训计划
  • 批准号:
    511166-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Collaborative Research and Training Experience
Methods to improve the reliability of biomechanical gait kinematic data.
提高生物力学步态运动学数据可靠性的方法。
  • 批准号:
    RGPIN-2014-04079
  • 财政年份:
    2018
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual
Methods to improve the reliability of biomechanical gait kinematic data.
提高生物力学步态运动学数据可靠性的方法。
  • 批准号:
    RGPIN-2014-04079
  • 财政年份:
    2017
  • 资助金额:
    $ 3.35万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于光谱信息校正与特征拟合的月表水冰红外遥感探测可靠性提升方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大数据云计算系统的可靠性智能提升理论与服务质量保障方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
千米深井高速重载提升机制动系统多失效模式可靠性评估方法
  • 批准号:
    51875567
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
大数据驱动下面向服务系统的可靠性提升方法研究
  • 批准号:
    61802003
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
提升建筑能耗监测系统数据质量的分层级协调优化方法
  • 批准号:
    61803067
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Clinical Trial Readiness - Primary Ciliary Dyskinesia (CTR-PCD)
临床试验准备 - 原发性纤毛运动障碍 (CTR-PCD)
  • 批准号:
    10418833
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10364433
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
Examining the Potential of Shared Decision Making to Improve the Effectiveness of Youth Mental Health Treatment in Community Mental Health Centers
检验共同决策在提高社区心理健康中心青少年心理健康治疗有效性方面的潜力
  • 批准号:
    10623190
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
Clinical Trial Readiness - Primary Ciliary Dyskinesia (CTR-PCD)
临床试验准备 - 原发性纤毛运动障碍 (CTR-PCD)
  • 批准号:
    10656216
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10542758
  • 财政年份:
    2022
  • 资助金额:
    $ 3.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了