Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
基本信息
- 批准号:10542758
- 负责人:
- 金额:$ 67.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmerican College of SurgeonsAutomationAwarenessCardiacCardiac Surgery proceduresCaringClinicalCollectionDataData AnalysesData AnalyticsData CollectionData ElementData ScienceDatabasesEarly DiagnosisElectronic Health RecordEvaluationExcess MortalityFeedbackFutureGoalsHandHospitalsIndustryInfrastructureInstitutionInterviewLinkManualsMeasurementMethodologyMethodsModelingModernizationModificationNational Heart, Lung, and Blood InstituteNatural Language ProcessingNotificationObservational StudyOperative Surgical ProceduresOutcomePatientsPerformancePerioperative CarePrivate SectorProcessQualitative MethodsRegistriesReportingResearchResearch PersonnelResearch PriorityResourcesRisk AdjustmentSafetySocietiesStatistical ComputingStructureSumThoracic SurgeonTimeUnited States Department of Veterans AffairsUpdateWorkadvanced analyticsdata warehouseexperiencehospital performanceimplementation strategyimprovedinnovationinterestmortalitynovelprogramsresponse
项目摘要
Within existing national surgical quality improvement (QI) programs, there are numerous opportunities to
improve the efficiency of data flow from the point of collection to the time at which performance-based
feedback is provided to stakeholders. Current limitations of the QI data cycle include: (a) reliance on hand
abstraction for data collection; (b) a retrospective and episodic (e.g.: quarterly, bi-annually, etc.) approach to
analysis and feedback which creates a time lag from when the hospital’s performance is declining and when it is
made aware; (c) small clusters of clinically meaningful poor performance may go of undetected using current
episodic analytic structures. To address the first limitation, modern data science methods (MDSMs) could be
used to automate the collection of some, or all, of the variables within surgical QI registries. Full or partial
automation of data collection could allow the substantial resources currently committed to manual data
abstraction to be repurposed to support more continuous, proactive engagement in local QI activities. To
address the limitations associated with episodic performance evaluation, alternative approaches for analyzing
data in more real-time could be applied to provide an early warning of declining performance. The Veterans
Affairs (VA) Surgical Quality Improvement Program (VASQIP) is one of the most successful and longest-
standing national clinical registries used for surgical QI and has been the template for a number of similar
programs in the private sector. As such, VASQIP represents an excellent model for evaluating alternative
approaches to data collection and analysis that could allow for more efficient data flow through the quality
improvement cycle and enhance national surgical QI efforts. The overall goal of this proposal is to evaluate
alternative, potentially more efficient strategies that can be readily implemented within the existing
infrastructure of contemporary surgical QI programs and aid in the more efficient flow of data. The specific
aims are to: (1) develop and validate MDSMs to use structured and unstructured electronic health record data
to automate cardiac VASQIP data collection; (2) compare the risk-adjusted CUSUM (a statistical process
control methodology borrowed from industry) to quarterly observed-to-expected ratios (i.e.: VASQIP’s current
approach to assessing performance) for evaluating VA hospital cardiac surgical performance; (3) conduct semi-
structured interviews with diverse stakeholder groups to set a national research agenda for expansion and
improvement of surgical QI programs. This mixed-methods proposal will involve observational studies using
VASQIP and VA Corporate Data Warehouse data for patients who underwent cardiac surgery at a VA hospital
between 2016 and 2020 as well as qualitative interviews with stakeholders who can help to inform future
changes that can improve the data available within VASQIP. This project is important and novel because it will
provide real-world, generalizable data that can be used to inform national surgical and non-surgical QI
initiatives within VA and the private sector.
在现有的国家外科质量改进 (QI) 计划中,有很多机会
提高从收集点到基于性能的数据流的效率
向利益相关者提供反馈。目前 QI 数据周期的局限性包括: (a) 对现有数据的依赖。
数据收集的摘要;(b) 采用回顾性和偶发性(例如:每季度、每半年等)的方法
分析和反馈导致医院绩效下降和绩效改善存在时间滞后
(c) 使用电流可能无法检测到一小群具有临床意义的不良表现
为了解决第一个限制,现代数据科学方法(MDSM)可以是。
用于自动收集外科 QI 注册表中的部分或全部变量。
数据收集的自动化可以使目前用于手动数据的大量资源得到利用
抽象将被重新调整用途,以支持更持续、更主动地参与本地质量保证活动。
解决与情景绩效评估、替代分析方法相关的局限性
更实时的数据可以用于为退伍军人的表现提供预警。
事务 (VA) 手术质量改进计划 (VASQIP) 是最成功、持续时间最长的计划之一
用于外科 QI 的常设国家临床注册中心,并已成为许多类似的模板
因此,VASQIP 是评估替代方案的绝佳模型。
数据收集和分析的方法可以通过质量保证更有效的数据流
改进周期并加强国家外科 QI 工作 该提案的总体目标是评估。
替代的、可能更有效的策略,可以在现有的框架内轻松实施
当代外科 QI 项目的基础设施,并有助于更有效的数据流。
目标是:(1) 开发和验证 MDSM 以使用结构化和非结构化电子健康记录数据
自动收集心脏 VASQIP 数据;(2) 比较风险调整 CUSUM(统计过程)
从行业借用的控制方法)到季度观察到预期比率(即:VASQIP当前的
(3) 进行半
与不同利益相关者群体进行结构化访谈,以制定扩大和扩展的国家研究议程
该混合方法提案将涉及使用的观察性研究。
VASQIP 和 VA Corporate Data Warehouse 数据,提供在 VA 医院接受心脏手术的患者的数据
2016 年至 2020 年间,以及对利益相关者进行定性访谈,这些访谈有助于为未来提供信息
可以改善 VASQIP 内可用数据的更改该项目很重要且新颖,因为它将。
提供真实世界的、可概括的数据,可用于告知国家外科和非外科质量状况
VA 和私营部门内的举措。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nader Nabile Massarweh其他文献
Nader Nabile Massarweh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nader Nabile Massarweh', 18)}}的其他基金
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
- 批准号:
10364433 - 财政年份:2022
- 资助金额:
$ 67.72万 - 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
- 批准号:
10641658 - 财政年份:2021
- 资助金额:
$ 67.72万 - 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
- 批准号:
10334529 - 财政年份:2021
- 资助金额:
$ 67.72万 - 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
- 批准号:
10187843 - 财政年份:2021
- 资助金额:
$ 67.72万 - 项目类别:
Enhancing the Efficiency of Data Collection for Surgical Quality Improvement
提高数据收集效率以提高手术质量
- 批准号:
10547734 - 财政年份:2021
- 资助金额:
$ 67.72万 - 项目类别:
Comparative Effectiveness of Alternative Strategies for Monitoring Hospital Surgical Performance
监测医院手术表现的替代策略的比较有效性
- 批准号:
10186540 - 财政年份:2018
- 资助金额:
$ 67.72万 - 项目类别:
Comparative Effectiveness of Alternative Strategies for Monitoring Hospital Surgical Performance
监测医院手术表现的替代策略的比较有效性
- 批准号:
9692259 - 财政年份:2018
- 资助金额:
$ 67.72万 - 项目类别:
Comparative effectiveness of real-time and episodic hospital surgical performance evaluation
实时与间歇式医院手术绩效评估的效果比较
- 批准号:
9370221 - 财政年份:2017
- 资助金额:
$ 67.72万 - 项目类别:
A Population-Based Analysis of Care and Outcomes for Hepatocellular Carcinoma
基于人群的肝细胞癌护理和结果分析
- 批准号:
7541665 - 财政年份:2008
- 资助金额:
$ 67.72万 - 项目类别:
A Population-Based Analysis of Care and Outcomes for Hepatocellular Carcinoma
基于人群的肝细胞癌护理和结果分析
- 批准号:
7812042 - 财政年份:2008
- 资助金额:
$ 67.72万 - 项目类别:
相似海外基金
ACTFAST: Urban and Rural Trauma Centers RE-AIM at Firearm Injury Prevention
ACTFAST:城乡创伤中心重新瞄准枪支伤害预防
- 批准号:
10812044 - 财政年份:2023
- 资助金额:
$ 67.72万 - 项目类别:
Mitigating Injury Disparities with Evidence Based Trauma Systems Planning
通过基于证据的创伤系统规划来减轻伤害差异
- 批准号:
10786608 - 财政年份:2023
- 资助金额:
$ 67.72万 - 项目类别:
Preparing older adults for major abdominal surgery: a systems engineering approach to implement preoperative comprehensive geriatric assessments
为老年人进行腹部大手术做好准备:实施术前综合老年评估的系统工程方法
- 批准号:
10643615 - 财政年份:2023
- 资助金额:
$ 67.72万 - 项目类别:
Applying User-centered Design and Implementation Science to Enhance Prehabilitation for Frail Older Adults Undergoing Lung Cancer Surgery
应用以用户为中心的设计和实施科学来加强接受肺癌手术的体弱老年人的康复
- 批准号:
10727197 - 财政年份:2023
- 资助金额:
$ 67.72万 - 项目类别:
Identifying Modifiable Practices Related to Outcome Variation and Enhancement in Transcatheter Aortic Valve Replacement (IMPROVE TAVR)
确定与经导管主动脉瓣置换术结果变化和增强相关的可修改实践(IMPROVE TAVR)
- 批准号:
10370068 - 财政年份:2022
- 资助金额:
$ 67.72万 - 项目类别: