Probabilistic bias adjustment of remotely sensed quantitative precipitation estimations to improve urban flood risk assessments in southern Canada

遥感定量降水估计的概率偏差调整以改进加拿大南部城市洪水风险评估

基本信息

  • 批准号:
    538219-2019
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Extreme precipitation events have significant social, economic and environmental consequences over Canada particularly in urban domains. This project, conducted in collaboration with industry-partner the Institute for Catastrophic Loss Reduction (ICLR), will develop a novel probabilistic framework to evaluate, bias-correct and blend recently generated remotely sensed (RS) precipitation products including Multi-satellitE Retrievals for GPM (Global Precipitation Measurement) (IMERG) and Multi-Radar Multi-Sensor (MRMS) to improve the robustness of urban flood risk assessments. We will analyze the intensity and duration of extreme precipitation events and the corresponding biases by comparing RS estimations with in-situ observations. The project will characterize the spatial dependencies of biases through the development of their marginal and joint distributions using Copulas. Monte Carlo samples from the joint distribution will be taken to bias correct RS for areas where in-situ observations do not exist. The probabilistic bias adjusted RS products will be merged based on a Bayesian approach which, combined with the insurance data, will be used for flood risk analysis. We will assess the reliability of the adjusted precipitation estimations by driving a hydrological model using raw and adjusted data and assessing streamflow simulations against observed records. The proposed probabilistic approach is a major step towards robust flood hazard and risk analysis and has considerable socio-economic and environmental benefits for municipalities, insurance industry and other stakeholders in Canada.
极端降水事件对加拿大尤其是城市地区产生重大的社会、经济和环境影响。该项目与行业合作伙伴灾难性损失减少研究所 (ICLR) 合作开展,将开发一种新颖的概率框架来评估、偏差校正和混合最近生成的遥感 (RS) 降水产品,包括 GPM 多卫星检索(全球降水测量)(IMERG)和多雷达多传感器(MRMS)可提高城市洪水风险评估的稳健性。我们将通过比较RS估计与现场观测来分析极端降水事件的强度和持续时间以及相应的偏差。该项目将通过使用 Copulas 开发偏差的边际分布和联合分布来表征偏差的空间依赖性。对于不存在现场观测的区域,将采用联合分布的蒙特卡罗样本来校正 RS 的偏差。概率偏差调整后的 RS 产品将基于贝叶斯方法进行合并,并与保险数据相结合,用于洪水风险分析。我们将通过使用原始数据和调整后的数据驱动水文模型并根据观测记录评估水流模拟来评估调整后的降水估算的可靠性。拟议的概率方法是迈向稳健的洪水灾害和风险分析的重要一步,并且为加拿大的市政当局、保险业和其他利益相关者带来了可观的社会经济和环境效益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Najafi, MohammadReza其他文献

Najafi, MohammadReza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Najafi, MohammadReza', 18)}}的其他基金

Improved Characterization of Hydroclimatic Extremes through the Development of a Comprehensive Nonstationary Modelling Framework
通过开发综合非平稳建模框架改进极端水文气候特征
  • 批准号:
    RGPIN-2017-05558
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Improved Characterization of Hydroclimatic Extremes through the Development of a Comprehensive Nonstationary Modelling Framework
通过开发综合非平稳建模框架改进极端水文气候特征
  • 批准号:
    RGPIN-2017-05558
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
An Integrated Risk Assessment Framework for Compound Flooding in Canadian Urban Environments
加拿大城市环境复合洪水综合风险评估框架
  • 批准号:
    556285-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Improved Characterization of Hydroclimatic Extremes through the Development of a Comprehensive Nonstationary Modelling Framework
通过开发综合非平稳建模框架改进极端水文气候特征
  • 批准号:
    RGPIN-2017-05558
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
An Integrated Risk Assessment Framework for Compound Flooding in Canadian Urban Environments
加拿大城市环境复合洪水综合风险评估框架
  • 批准号:
    556285-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
An integrated top-down and bottom-up approach to assess and mitigate river flood risks under climate and land-use change
采用自上而下和自下而上的综合方法来评估和减轻气候和土地利用变化下的河流洪水风险
  • 批准号:
    523924-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Improved Characterization of Hydroclimatic Extremes through the Development of a Comprehensive Nonstationary Modelling Framework
通过开发综合非平稳建模框架改进极端水文气候特征
  • 批准号:
    RGPIN-2017-05558
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
An integrated top-down and bottom-up approach to assess and mitigate river flood risks under climate and land-use change
采用自上而下和自下而上的综合方法来评估和减轻气候和土地利用变化下的河流洪水风险
  • 批准号:
    523924-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Improved Characterization of Hydroclimatic Extremes through the Development of a Comprehensive Nonstationary Modelling Framework
通过开发综合非平稳建模框架改进极端水文气候特征
  • 批准号:
    RGPIN-2017-05558
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
A Novel Probabilistic Flood Modelling Framework to Improve Infrastructure Resilience
提高基础设施弹性的新型概率洪水建模框架
  • 批准号:
    517998-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program

相似国自然基金

打破身份偏见:AI服务机器人的组织身份对消费决策的影响研究
  • 批准号:
    72372049
  • 批准年份:
    2023
  • 资助金额:
    42 万元
  • 项目类别:
    面上项目
面向图像识别的去偏见算法研究
  • 批准号:
    62306043
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
领域视觉特性隐含偏见挖掘分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
性别观念对职业性别隔离和生产效率的影响研究-基于择业者自身性别偏见视角
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
基于mGWAS解析莲特异的苄基异喹啉生物碱(BIAs)合成的关键基因
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:

相似海外基金

Identifying the Ideal Dose of Structured Summer Programming for Mitigating Accelerated Summer BMI Gain
确定结构化夏季计划的理想剂量,以缓解夏季体重指数加速增长
  • 批准号:
    10653609
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Racial Bias in Risk Adjustment Algorithms and Implications for Racial Health Disparities: Evidence from Dual-Eligible Medicare/Medicaid Long-term Care Patients in New York
风险调整算法中的种族偏见以及对种族健康差异的影响:来自纽约双重资格医疗保险/医疗补助长期护理患者的证据
  • 批准号:
    10624402
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Racial Bias in Risk Adjustment Algorithms and Implications for Racial Health Disparities: Evidence from Dual-Eligible Medicare/Medicaid Long-term Care Patients in New York
风险调整算法中的种族偏见以及对种族健康差异的影响:来自纽约双重资格医疗保险/医疗补助长期护理患者的证据
  • 批准号:
    10474727
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Improving the Risk Adjustment Method for Quality Care Measures through Application of an Innovative Individual-Level Socioeconomic Measure
通过应用创新的个人层面的社会经济措施,改进优质护理措施的风险调整方法
  • 批准号:
    10213256
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
Improving the Risk Adjustment Method for Quality Care Measures through Application of an Innovative Individual-Level Socioeconomic Measure
通过应用创新的个人层面的社会经济措施,改进优质护理措施的风险调整方法
  • 批准号:
    10394328
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了