Racial Bias in Risk Adjustment Algorithms and Implications for Racial Health Disparities: Evidence from Dual-Eligible Medicare/Medicaid Long-term Care Patients in New York
风险调整算法中的种族偏见以及对种族健康差异的影响:来自纽约双重资格医疗保险/医疗补助长期护理患者的证据
基本信息
- 批准号:10624402
- 负责人:
- 金额:$ 38.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAgeAlgorithmsAreaAuthorization documentationAutomobile DrivingBehaviorBlack raceCaringCharacteristicsChronicClassificationCodeContractsCountyCreamDataData SetDisparityDrug PrescriptionsDrug usageEnrollmentEthnic OriginEthnic PopulationExclusionGenderGovernmentHealthHealth Care CostsHealth InsuranceHealth StatusHealthcareIncentivesIncomeInpatientsInsurance CarriersKnowledgeLeadLearningLinkLiteratureLong-Term CareManaged CareManaged Care ProgramsMediationMedicare/MedicaidModelingNew YorkNursing HomesOutcomePatient CarePatient-Focused OutcomesPatientsPolicy MakerPrivatizationProviderQuality of CareRaceRandomizedRecordsResearchResourcesRisk AdjustmentRoleService provisionSocioeconomic FactorsSubgroupSystemSystematic BiasTestingauthoritybeneficiaryblack patientcare systemscomorbiditycostdesigndual eligiblefinancial incentivehealth care disparityhealth care servicehealth care service organizationhealth care service utilizationhospitalization ratesinsurance planmortalityoutcome disparitiesparticipant enrollmentpatient home carepatient subsetspaymentpredictive modelingprogramspublic health insuranceracial biasracial differenceracial disparityracial health disparityracial populationsex
项目摘要
PROJECT SUMMARY/ABSTRACT
A growing body of evidence demonstrates the presence of racial bias in data algorithms. In healthcare, racial
bias could arise due to systematic biases in classification and coding, data availability, or data accuracies that
differ across racial groups. For instance, algorithms that use data on healthcare costs—rather than illness—to
predict need tend to allocate too few resources to Black patients who are underserved by our current system
and generate lower spending than white patients with the same health conditions. This issue is increasingly
relevant because most U.S. public health insurance programs operate capitated managed care systems, in
which beneficiaries enroll in private insurance plans, and the government pays insurers a fixed monthly
capitation payment per enrollee. These per-capita payments are typically calculated using risk-adjustment
algorithms, in which patient costs are predicted with information on age, gender, and selected health conditions
from data on past enrollees. However, race is often excluded from these algorithms, raising the possibility that
risk-adjusted managed care could widen racial disparities in care and outcomes among patients. Yet there is
little empirical evidence on the impacts of risk-adjusted managed care systems on racial differences in care
and health outcomes, especially in high-cost settings, such as long-term care. This project will advance
knowledge on these issues by studying the causal effects of risk-adjusted managed long-term care (MLTC) on
racial disparities in care and outcomes among dual-eligible Medicare/Medicaid long-term care beneficiaries in
New York, using 8 years of administrative data on Medicaid and Medicare enrollment, claims, and assessment
records. The project will identify the effects of risk-adjusted MLTC on a range of care utilization and health
outcomes, including inpatient, post-acute, nursing home, and at-home care, prescription drug use, and
mortality, separately by patient race/ethnicity. Leveraging the county-by-county rollout of managed care
mandates, the analysis will use difference-in-differences models to compare within-county changes in
outcomes of patients in New York from before to after managed care was implemented. We will estimate
separate models by race/ethnicity of the patient, testing for statistical differences in MLTC effects. The project
will also identify subgroups who are most severely affected by racial bias in risk-adjustment algorithms, through
sub-group analyses that compare effects by gender, age, presence of chronic conditions, and zip code level
median income. The project will additionally examine the role of managed care plan features in driving racial
disparities in health care utilization and health outcomes. Results will help policymakers, healthcare
organizations, providers, and patients to understand the implications of bias in risk-adjustment algorithms on
patient health, identify subgroups of patients who are most severely impacted, and learn about effective plan
features that could curb or eliminate racial health disparities in managed care settings.
项目概要/摘要
越来越多的证据表明数据算法中存在种族偏见。
由于分类和编码、数据可用性或数据准确性方面的系统偏差,可能会出现偏差
例如,使用医疗费用数据(而不是疾病数据)的算法是不同的。
预测需要向我们当前系统服务不足的黑人患者分配太少的资源
并且产生的支出低于具有相同健康状况的白人患者,这个问题日益严重。
相关的,因为大多数美国公共健康保险计划都实行按人头管理的医疗系统,
受益人参加私人保险计划,政府每月向保险公司支付固定费用
每个参与者的人均付款通常使用风险调整来计算。
算法,其中根据年龄、性别和所选健康状况的信息来预测患者费用
然而,种族往往被排除在这些算法之外,这增加了这种可能性:
风险调整管理式医疗可能会扩大患者护理和结果方面的种族差异。
关于风险调整管理式医疗系统对护理种族差异影响的实证证据很少
和健康成果,特别是在高成本环境中,例如长期护理,该项目将取得进展。
通过研究风险调整管理长期护理 (MLTC) 对这些问题的因果影响
具有双重资格的医疗保险/医疗补助长期护理受益人在护理和结果方面的种族差异
纽约,使用 8 年有关医疗补助和医疗保险登记、索赔和评估的行政数据
该项目将确定风险调整后的 MLTC 对一系列护理利用和健康的影响。
结果,包括住院、急性后、疗养院和家庭护理、处方药使用和
死亡率,分别按患者种族/民族利用逐县推出的管理式护理。
根据要求,分析将使用双重差分模型来比较县内的变化
我们将估计纽约患者在实施管理式医疗之前和之后的结果。
按患者的种族/民族划分模型,测试 MLTC 效果的统计差异。
还将确定风险调整算法中受种族偏见影响最严重的亚组,通过
亚组分析,比较性别、年龄、慢性病存在情况和邮政编码级别的影响
该项目还将研究管理式医疗计划功能在推动种族歧视方面的作用。
医疗保健利用和健康结果的差异将有助于政策制定者和医疗保健。
组织、提供者和患者了解风险调整算法中偏差的影响
患者健康状况,确定受影响最严重的患者亚组,并了解有效的计划
可以遏制或消除管理式医疗环境中种族健康差异的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ajin Lee其他文献
Ajin Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ajin Lee', 18)}}的其他基金
Racial Bias in Risk Adjustment Algorithms and Implications for Racial Health Disparities: Evidence from Dual-Eligible Medicare/Medicaid Long-term Care Patients in New York
风险调整算法中的种族偏见以及对种族健康差异的影响:来自纽约双重资格医疗保险/医疗补助长期护理患者的证据
- 批准号:
10474727 - 财政年份:2022
- 资助金额:
$ 38.77万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
Regulation and function of aged hematopoietic stem cell (HSC) niche
衰老造血干细胞(HSC)生态位的调节和功能
- 批准号:
10723396 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
Contribution of Vitamin D Deficiency to Pathological Progression in Models of Cerebral Hypoperfusion
维生素 D 缺乏对脑低灌注模型病理进展的影响
- 批准号:
10725358 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别:
Detecting Adolescent Suicidality Biometric Signals and Dynamic Variability with Wearable Technology
利用可穿戴技术检测青少年自杀生物特征信号和动态变异性
- 批准号:
10731651 - 财政年份:2023
- 资助金额:
$ 38.77万 - 项目类别: