Enhancing nanoscale heat transport in novel materials and electronic devices

增强新型材料和电子设备中的纳米级热传输

基本信息

  • 批准号:
    RGPIN-2015-05221
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Electronic equipment accounts for a significant fraction of our rapidly increasing global demand for energy and it is projected to consume 30% of our energy budget in 10 years. Improving the energy efficiency in electronic devices such as the transistor at the computing core of data centers, or the light-emitting diode that will become pervasive in lighting applications, can have a remarkable influence on a country's future economy and environmental impact.******Heat transport has profound effects on the energy efficiency, performance and reliability of electronic devices. Particularly at the nanoscale, heat flow is greatly affected by low-dimensionality, device geometry and the presence of interfaces across materials with dissimilar phonon spectra. As device size is reduced or more functionality is added, the quality and number of interfaces that pose as barriers to heat flow have greater impact, and understanding their role can lead to ways to engineer energy-efficient devices. On a fundamental level, knowledge of how heat flow affects electronic transport phenomena can drive the discovery of new functionality. The proposed research aims to answer the following questions: how is heat transported in novel materials that may be used in future electronic devices? How can interfaces be tailored to improve cooling efficiency? How can one probe heat transport at the nanoscale? Answering these questions can in the long term shape the functionality and energy use of the evolving electronics landscape.******Versatile optical pump-probe techniques have emerged to investigate heat transport in materials, interfaces and composites. In the short term we will adopt and extend these techniques to make them sensitive to heat transport over a large range of heat transport length scales, in order to span the diffusive to the quasi-ballistic limits. Additionally, electrical thermometry will allow us to probe devices locally. These tools will be applied to the study of heat flow in: (i) emerging 2-dimensional electronic materials, (ii) nanoscale composites with high thermal anisotropy, (iii) magnetic junctions used in magnetic field sensors and magnetic random access memories.******The impact of this work will benefit Canada's economy in the short term through the training of highly qualified personnel and raising the profile of the country's university research work. Furthermore, research on thermal anisotropy in composites has immediate applications in the data storage industry, and can contribute directly to progress in hard disk drive products. In the long run this research program will improve the performance, energy efficiency and environmental impact of the world's rapidly growing electronic, computing and telecommunications infrastructure.
电子设备在全球快速增长的能源需求中占据很大一部分,预计 10 年内将消耗我们能源预算的 30%。提高电子设备的能源效率,例如数据中心计算核心的晶体管或将在照明应用中普及的发光二极管,可以对一个国家的未来经济和环境影响产生显着影响。*** ***热传输对电子设备的能源效率、性能和可靠性有着深远的影响。特别是在纳米尺度上,热流很大程度上受到低维、器件几何形状以及具有不同声子光谱的材料之间界面的存在的影响。 随着设备尺寸的减小或功能的增加,作为热流屏障的接口的质量和数量会产生更大的影响,了解它们的作用可以找到设计节能设备的方法。从根本上讲,了解热流如何影响电子传输现象可以推动新功能的发现。拟议的研究旨在回答以下问题:未来电子设备中可能使用的新型材料中的热量如何传输?如何定制接口以提高冷却效率?如何在纳米尺度上探测热传输?从长远来看,回答这些问题可以塑造不断发展的电子领域的功能和能源使用。******多功能光泵浦探针技术已经出现,用于研究材料、界面和复合材料中的热传输。在短期内,我们将采用并扩展这些技术,使它们对大范围热传输长度尺度上的热传输敏感,以便将扩散跨越到准弹道极限。此外,电测温技术将使我们能够在本地探测设备。这些工具将应用于热流研究:(i) 新兴二维电子材料,(ii) 具有高热各向异性的纳米级复合材料,(iii) 磁场传感器和磁性随机存取存储器中使用的磁性结。* *****这项工作的影响将通过培训高素质人才和提高该国大学研究工作的知名度,在短期内使加拿大经济受益。此外,复合材料热各向异性的研究可直接应用于数据存储行业,并可直接促进硬盘驱动器产品的进步。从长远来看,该研究计划将提高世界快速增长的电子、计算和电信基础设施的性能、能源效率和环境影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pisana, Simone其他文献

Breakdown of the adiabatic Born-Oppenheimer approximation in graphene
  • DOI:
    10.1038/nmat1846
  • 发表时间:
    2007-03-01
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Pisana, Simone;Lazzeri, Michele;Mauri, Francesco
  • 通讯作者:
    Mauri, Francesco
Enhanced B2 Ordering of FeRh Thin Films Using B2 NiAl Underlayers
  • DOI:
    10.1109/tmag.2011.2157963
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Kande, Dhishan;Pisana, Simone;Zhu, Jian-Gang
  • 通讯作者:
    Zhu, Jian-Gang
Importance of quadratic dispersion in acoustic flexural phonons for thermal transport of two-dimensional materials
  • DOI:
    10.1103/physrevb.103.235426
  • 发表时间:
    2021-06-22
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Taheri, Armin;Pisana, Simone;Singh, Chandra Veer
  • 通讯作者:
    Singh, Chandra Veer
Enhanced subthreshold slopes in large diameter single wall carbon nanotube field effect transistors
  • DOI:
    10.1109/tnano.2008.917849
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Pisana, Simone;Zhang, Can;Robertson, John
  • 通讯作者:
    Robertson, John
Comparison of the effects of surface plasmon resonance and the transverse magneto-optic Kerr effect in magneto-optic plasmonic nanostructures
  • DOI:
    10.1088/1361-6463/ab4ec0
  • 发表时间:
    2020-01-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Rizal, Conrad;Kapralov, Pavel O.;Pisana, Simone
  • 通讯作者:
    Pisana, Simone

Pisana, Simone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pisana, Simone', 18)}}的其他基金

Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
  • 批准号:
    RGPIN-2020-06137
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
  • 批准号:
    RGPIN-2020-06137
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
  • 批准号:
    RGPIN-2020-06137
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Electromagnetic hazardous spill retention system
电磁危险泄漏保留系统
  • 批准号:
    543542-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
  • 批准号:
    RGPIN-2015-05221
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Design and optimization of heat dissipation and illumination patterns in novel recessed chip-on-board designs for high-power LED lighting applications
针对高功率 LED 照明应用的新型嵌入式芯片级设计中的散热和照明模式的设计和优化
  • 批准号:
    521640-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
  • 批准号:
    RGPIN-2015-05221
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
  • 批准号:
    RGPIN-2015-05221
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
  • 批准号:
    RGPIN-2015-05221
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

肿瘤细胞纳米级量子三维热成像机理及动态温度场重构方法研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
纳米级润滑膜在移动激光辐射下的热损耗行为计算研究
  • 批准号:
    51603160
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
煤中纳米级矿物的地球化学特征及热转化机制
  • 批准号:
    41602178
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
多级绕组高动态纳米级定位音圈电机系统的基础研究
  • 批准号:
    51177024
  • 批准年份:
    2011
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
纳米级微定位系统热误差辨识与补偿关键技术研究
  • 批准号:
    50705064
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nanopore Array for Multiparameter Analysis of Single Extracellular Vesicles
用于单个细胞外囊泡多参数分析的纳米孔阵列
  • 批准号:
    10760154
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Understanding the role of water molecule diffusion in nanoscale heat transfer for improving thermal energy output of thermochemical heat storage material
了解水分子扩散在纳米级传热中的作用,以提高热化学储热材料的热能输出
  • 批准号:
    23K13818
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
  • 批准号:
    10522560
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
  • 批准号:
    10703469
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
  • 批准号:
    RGPIN-2020-06137
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了