Exploiting nanoscale heat transport in novel materials for electronic device applications

在电子设备应用的新型材料中利用纳米级热传输

基本信息

  • 批准号:
    RGPIN-2020-06137
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Poor heat dissipation is one of the fundamental limiters of device performance and strongly influences device failure. In highly integrated electronic devices such as lasers, transistors and sensors, high current densities generate intense localized heat that can not only alter material properties, but also lead to irreversible structural changes. Mitigating these effects at the macroscopic scale has allowed the commercialization of ever more capable electronic, photonic and data storage systems. However, at the microscopic device level the presence of interfaces, insulators or geometric confinement pose severe limitations to our ability to dispose waste heat and evolve technologies that are central to computing systems, communication systems, and manufacturing. In our increasingly more digital lifestyles, our reliance on ever growing amounts of digital information will greatly benefit from radical shifts in the way data is processed, stored and communicated that goes beyond today's economies of scale. In other words, revolutionary improvements in electronic devices will allow faster technological progress with fewer incremental resources. The study of nanoscale heat transport can therefore affect a myriad of applications. The scientific community is still developing an understanding of the processes driving heat transport at the nanoscale, where microscopic processes such as non-classical energy transfer, interaction between electrons and crystal vibrations and finite size effects become important. While important challenges in the field remain, such as how to alleviate the heat dissipation bottleneck in electronic devices, an intriguing question surfaces: how can we exploit the different way heat conducts at the nanoscale to our advantage? The emergence of new classes of materials such as 2-dimensional crystals, organic/inorganic nanoscale composites and atomically layered metal compounds are presenting opportunities for different devices based on their electronic and magnetic properties and are also very interesting due to their highly directional heat transport, which can be used to channel heat where convenient. Non-classical phenomena can limit the dissipation of heat, but recently it was shown that in some cases an enhancement is possible. The study of crystals with highly directional and non-classical energy transport can therefore provide an unprecedented tuning knob for opto-electronic devices, sensing, energy harvesting and data storage technologies. The proposed research will address heat transport challenges and opportunities for photonic devices, next generation data storage technologies, devices and materials composted of 2-dimensional crystals. This work will leverage existing international collaborations with academia and the data storage industry. The impact of this work will in the long run transform our rapidly growing electronic, computing and telecommunications infrastructure.
散热不良是设备性能的基本限制之一,并强烈影响设备故障。在高度集成的电子设备(例如激光器,晶体管和传感器)中,高电流密度会产生强烈的局部热量,不仅可以改变材料特性,而且会导致不可逆的结构变化。在宏观尺度上缓解这些效果已使越来越强大的电子,光子和数据存储系统的商业化。但是,在微观设备级别上,界面,绝缘体或几何限制的存在对我们处置废热和进化技术的能力构成了严重的限制,这些技术是计算系统,通信系统和制造的核心。在我们越来越多的数字生活方式中,我们对越来越多的数字信息的依赖将大大受益于数据的处理,存储和传达的方式,这超出了当今的规模经济。换句话说,电子设备的革命性改进将允许使用更少的增量资源来更快的技术进步。因此,对纳米级热传输的研究可能会影响无数的应用。科学界仍在对驱动纳米级热传输的过程的理解发展,在该过程中,微观过程(例如非经典能量转移,电子与晶体振动之间的相互作用)以及有限尺寸效应变得很重要。尽管该领域的重要挑战仍然存在,例如如何减轻电子设备中的热量耗散瓶颈,但一个有趣的问题表面:我们如何利用纳米级热量的不同方式来利用我们的优势?新型材料的出现,例如二维晶体,​​有机/无机纳米级复合材料和原子分层的金属化合物,基于其电子和磁性特性为不同的设备提供了机会,并且由于其高度方向的热传输,也非常有趣可以用来将热量引导在方便的情况下。非古典现象可以限制热量的耗散,但最近表明,在某些情况下是可能的。因此,对具有高方向和非经典能量传输的晶体的研究可以为光电设备,传感,能量收集和数据存储技术提供前所未有的调谐旋钮。拟议的研究将解决光子设备,下一代数据存储技术,设备和材料堆肥的热传输挑战和机会。这项工作将利用与学术界和数据存储行业的现有国际合作。从长远来看,这项工作的影响将改变我们快速增长的电子,计算和电信基础设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pisana, Simone其他文献

Breakdown of the adiabatic Born-Oppenheimer approximation in graphene
  • DOI:
    10.1038/nmat1846
  • 发表时间:
    2007-03-01
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Pisana, Simone;Lazzeri, Michele;Mauri, Francesco
  • 通讯作者:
    Mauri, Francesco
Enhanced B2 Ordering of FeRh Thin Films Using B2 NiAl Underlayers
  • DOI:
    10.1109/tmag.2011.2157963
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Kande, Dhishan;Pisana, Simone;Zhu, Jian-Gang
  • 通讯作者:
    Zhu, Jian-Gang
Enhanced subthreshold slopes in large diameter single wall carbon nanotube field effect transistors
  • DOI:
    10.1109/tnano.2008.917849
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Pisana, Simone;Zhang, Can;Robertson, John
  • 通讯作者:
    Robertson, John
Importance of quadratic dispersion in acoustic flexural phonons for thermal transport of two-dimensional materials
  • DOI:
    10.1103/physrevb.103.235426
  • 发表时间:
    2021-06-22
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Taheri, Armin;Pisana, Simone;Singh, Chandra Veer
  • 通讯作者:
    Singh, Chandra Veer
Comparison of the effects of surface plasmon resonance and the transverse magneto-optic Kerr effect in magneto-optic plasmonic nanostructures
  • DOI:
    10.1088/1361-6463/ab4ec0
  • 发表时间:
    2020-01-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Rizal, Conrad;Kapralov, Pavel O.;Pisana, Simone
  • 通讯作者:
    Pisana, Simone

Pisana, Simone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pisana, Simone', 18)}}的其他基金

Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
  • 批准号:
    RGPIN-2020-06137
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting nanoscale heat transport in novel materials for electronic device applications
在电子设备应用的新型材料中利用纳米级热传输
  • 批准号:
    RGPIN-2020-06137
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
  • 批准号:
    RGPIN-2015-05221
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Electromagnetic hazardous spill retention system
电磁危险泄漏保留系统
  • 批准号:
    543542-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
  • 批准号:
    RGPIN-2015-05221
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Design and optimization of heat dissipation and illumination patterns in novel recessed chip-on-board designs for high-power LED lighting applications
针对高功率 LED 照明应用的新型嵌入式芯片级设计中的散热和照明模式的设计和优化
  • 批准号:
    521640-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
  • 批准号:
    RGPIN-2015-05221
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
  • 批准号:
    RGPIN-2015-05221
  • 财政年份:
    2016
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing nanoscale heat transport in novel materials and electronic devices
增强新型材料和电子设备中的纳米级热传输
  • 批准号:
    RGPIN-2015-05221
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

肿瘤细胞纳米级量子三维热成像机理及动态温度场重构方法研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
纳米级润滑膜在移动激光辐射下的热损耗行为计算研究
  • 批准号:
    51603160
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
煤中纳米级矿物的地球化学特征及热转化机制
  • 批准号:
    41602178
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
多级绕组高动态纳米级定位音圈电机系统的基础研究
  • 批准号:
    51177024
  • 批准年份:
    2011
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
纳米级微定位系统热误差辨识与补偿关键技术研究
  • 批准号:
    50705064
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Nanopore Array for Multiparameter Analysis of Single Extracellular Vesicles
用于单个细胞外囊泡多参数分析的纳米孔阵列
  • 批准号:
    10760154
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Understanding the role of water molecule diffusion in nanoscale heat transfer for improving thermal energy output of thermochemical heat storage material
了解水分子扩散在纳米级传热中的作用,以提高热化学储热材料的热能输出
  • 批准号:
    23K13818
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
  • 批准号:
    10522560
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
  • 批准号:
    10703469
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
Dual Role of HSP70 in Diabetes-Induced Vascular Dysfunction
HSP70 在糖尿病引起的血管功能障碍中的双重作用
  • 批准号:
    10515009
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了