Operator Algebras and Self-Similar Actions

算子代数和自相似动作

基本信息

  • 批准号:
    RGPIN-2018-04003
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Operator algebras are algebras generated by a family of continuous linear transformations on Hilbert spaces. They are originally from quantum physics. They are now closely related to other areas, such as quantum computing, quantum information, signal processing, representation theory and differential geometry. They are playing increasingly important roles in modern mathematics.******Intuitively speaking, an object is called self-similar if its parts are similar to the whole. So self-similarities are naturally related to symmetries appearing in fractal geometry and dynamics. Usually, they are encoded by semigroups/inverse semigroups/groupoids induced from self-similarities, which are isomorphisms between the parts of given self-similar objects on different scales. Self-similar actions have been attracting a great deal of attention in the fields of geometric group theory and operator algebras.******My proposal mainly focuses on the interplay between operator algebras and self-similar actions. This has deep connections with a lot of hot and interesting topics, such as higher-rank graph algebras, self-similar actions, and the Yang-Baxter equation. To be more precise, given a higher-rank graph and a group, suppose that the group acts on the higher-rank graph self-similarly. To this self-similar action, one then can associate some important operator algebras, such as the Toeplitz type C*-algebra and the Cuntz-Pimsner-type C*-algebra. In particular, the Cuntz-Pimsner type C*-algebra, by definition, is the universal C*-algebra with the following properties: There are a Cuntz-Krieger representation of the higher-rank graph and a unitary representation of the group, such that these two representations are naturally compatible with respect to the given self-similar higher-rank graph action. Even in the case of rank-1 graph actions, those C*-algebras include many well-known and important classes, such as Katsura algebras (which exhaust all Kirchberg algebras) and Nekrashevych C*-algebras (which are first operator algebras essentially induced from self-similar actions). It is also a fact that higher-rank graph algebras are much more complicated than rank-1 graph algebras. Therefore, it would be no surprise at all that those operator algebras coming from self-similar higher-rank graph actions embrace more interesting, important classes of operator algebras, and are also much more sophisticated than those from self-similar graph actions. On one hand, the case of rank-1 graph self-similar actions will give us some intuitions and motivations to our development of the higher-rank case. On the other hand, what we will gain from working on the higher-rank case will also give us a better understanding of the rank-1 case.******My proposal is an initiative to the study of self-similar higher-rank graph actions, and will open a lot of interesting and important topics which are worth studying in the future.
操作员代数是由希尔伯特空间上的连续线性变换家族产生的代数。它们最初来自量子物理学。它们现在与其他领域密切相关,例如量子计算,量子信息,信号处理,表示理论和差异几何形状。他们在现代数学中扮演着越来越重要的角色。因此,自相似性自然与分形几何形状和动力学中出现的对称性有关。通常,它们是由由自相似性引起的半群/逆半群/群体/群体编码的,它们是不同尺度上给定的自相似对象的各个部分之间的同构。自我相似的行动在几何群体理论和操作员代数的领域吸引了很多关注。这与许多热门有趣的主题具有深厚的联系,例如高级图代数,自相似动作和杨巴克斯特方程。更确切地说,给定较高的图和组,假设该组作用于更高级别的图形。为了进行这种自相似的动作,然后可以将一些重要的操作员代数关联,例如Toeplitz型C*-Algebra和Cuntz-Pimsner-type C*-Algebra。特别地,根据定义,Cuntz-Pimsner型C*-Algebra是具有以下属性的通用C*-Algebra:具有较高级别图的Cuntz-Krieger表示,并且该组的单位表示,因此这两个表示与给定的自我效果较高的较高较高的较高范围的图形自然兼容。即使在Rank-1图形动作的情况下,这些C*-Algebras也包括许多知名和重要类别,例如Katsura代数(耗尽所有Kirchberg代数)和Nekrashevych C*-Algebras(它们是由自相似动作诱导的第一操作代数)。同样,较高的图表代数比Rank-1图代数复杂得多。因此,从自相似的高级图形动作中的那些操作员代数包含更有趣,重要的操作员代数类别也就不足为奇了,并且比自相似的图形动作更复杂。一方面,Rank-1图的情况自相似的动作将为我们提供一些直觉和动机,以使我们开发更高的案例。另一方面,我们将从较高的案例工作中获得的收益也将使我们对排名1案例有更好的了解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang, Dilian其他文献

Nuclearity of semigroup C*-algebras
  • DOI:
    10.1016/j.jfa.2020.108793
  • 发表时间:
    2021-01-15
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Huef, Astrid An;Nucinkis, Brita;Yang, Dilian
  • 通讯作者:
    Yang, Dilian
Representing topological full groups in Steinberg algebras and C*-algebras
表示 Steinberg 代数和 C* 代数中的拓扑满群

Yang, Dilian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang, Dilian', 18)}}的其他基金

Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nonself-adjoint operator algebras and functional equations
非自共轭算子代数和函数方程
  • 批准号:
    358793-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nonself-adjoint operator algebras and functional equations
非自共轭算子代数和函数方程
  • 批准号:
    358793-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

代数K理论、代数数论及其在编码密码中的应用
  • 批准号:
    12371035
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
两流体代数模型新拓展及对反常核结构现象的理论研究
  • 批准号:
    12375113
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
几类代数Riccati方程的特殊解的显式表示及其应用
  • 批准号:
    12371380
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
李代数与有限W代数的Whittaker型表示和有限维表示
  • 批准号:
    12371026
  • 批准年份:
    2023
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
广义四元数代数上的若干超矩阵方程组及应用
  • 批准号:
    12371023
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Dynamical systems with singularities and operator algebras
具有奇点和算子代数的动力系统
  • 批准号:
    22K03354
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras and Self-Similar Actions
算子代数和自相似动作
  • 批准号:
    RGPIN-2018-04003
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Research on vertex operator algebras by using Conway groups
利用康威群研究顶点算子代数
  • 批准号:
    21K03195
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
  • 批准号:
    20K03505
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了