Multi-objective automatic data assimilation of a hydrological model based on classification of initial hydrologic states
基于初始水文状态分类的水文模型多目标自动数据同化
基本信息
- 批准号:522813-2018
- 负责人:
- 金额:$ 0.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Plus Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Power Operations division of Rio Tinto Aluminium (RTA) has the mandate to manage two large water**resources systems, namely the Lac-Saint-Jean system in Québec and the Nechako system in British-Columbia.**To manage the water resources systems efficiently and safely, multiple scenarios of inflow predictions are**produced and are fed into water resources management optimization models. The quality of the forecasted**inflows is crucial as it allows adequately mitigating flooding risks as well as maximizing hydropower**generation for a given volume of water.**Hydrologic models are used to produce inflow predictions and these are first trained on past data and then used**to produce inflow forecasts by driving the model with forecasted inputs like precipitation and temperature. The**initial states of the model are key parameters required to obtain an accurate forecast. To provide the best**possible initial states before starting the forecast simulations, an expert analyst compares the model states with**current observations and corrects these states manually if necessary. This procedure yields reliable short-term**forecasts. The skill of long-term forecasts, however, is poor due to the unclear propagation of the manual**changes through the complex system over a long horizon. This research is intended to automatize the process**of initial state updating using advanced sensitivity analysis and classification algorithms. The automatic**procedure will search for the optimal corrections to achieve both reliable short-term and long-term performance**of the forecasts based on the initial conditions of the catchment. This will help RTA to optimize their**operations using sustainable hydroelectricity.
Rio Tinto铝(RTA)的电力运营部门具有管理两个大水**资源系统的任务,即魁北克的Lac-Saint-Jean系统和不列颠哥伦比亚省的Nechako System。预测**流入的质量至关重要,因为它允许适当缓解洪水风险,并最大化水力发电**在给定的水量中生成**。模型的**初始状态是获得准确预测所需的关键参数。为了在启动预测模拟之前提供最佳**可能的初始状态,专家分析师将模型状态与**当前的观察结果进行比较,并在必要时手动纠正这些状态。该程序可获得可靠的短期**预测。然而,由于手册**在漫长的地平线上通过复杂系统的变化,长期森林人的技巧差。这项研究旨在使用高级灵敏度分析和分类算法自动化初始状态更新的过程**。自动**程序将根据流域的初始条件来搜索最佳校正,以实现森林的可靠短期和长期绩效**。这将有助于RTA使用可持续水电性优化其**操作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tolson, Bryan其他文献
Tolson, Bryan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tolson, Bryan', 18)}}的其他基金
Large-sample comparative hydrologic modelling computational laboratory
大样本比较水文模拟计算实验室
- 批准号:
RGPIN-2022-03890 - 财政年份:2022
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2020
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2018
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2017
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Identification, analysis and implementation of an automatic conditional data assimilation framework for hydrological forecasting in hydropower reservoir management
水电水库管理中水文预报自动条件资料同化框架的识别、分析和实现
- 批准号:
505753-2016 - 财政年份:2016
- 资助金额:
$ 0.91万 - 项目类别:
Engage Grants Program
A new hydrologic model evaluation framework
一种新的水文模型评估框架
- 批准号:
RGPIN-2016-04421 - 财政年份:2016
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Development of advanced calibration methods for computationally expensive hydrologic simulation models
为计算成本高昂的水文模拟模型开发先进的校准方法
- 批准号:
312531-2011 - 财政年份:2015
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Development of advanced calibration methods for computationally expensive hydrologic simulation models
为计算成本高昂的水文模拟模型开发先进的校准方法
- 批准号:
312531-2011 - 财政年份:2014
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
用于抑郁症多维度客观评估的特异性触发型光电双信号生物传感系统的应用研究
- 批准号:82372090
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于色氨酸代谢调节CD4+T细胞免疫表型探讨慢加急性肝衰竭瘀黄证亚型的生物学基础及客观辨识研究
- 批准号:82305067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鱼腥草及其主要马兜铃酸物质AL-BⅡ的潜在肾毒性客观评价及其与AA-I毒性差异机制研究
- 批准号:82304861
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于耳声发射产生源特性和时频域表征的客观听力检测技术研究
- 批准号:62301096
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The microstructure of cortical activity during sleep: Development of an objective, automatic procedure for sleep stage classification
睡眠期间皮质活动的微观结构:开发客观、自动的睡眠阶段分类程序
- 批准号:
455908056 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Research Grants
A Human-Mimetic AI System for Automatic, Passive and Objective Dietary Assessment
用于自动、被动和客观饮食评估的仿人人工智能系统
- 批准号:
10541843 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Construction of material exploration system using automatic first-principles calculation and multi-objective Bayesian optimiziation
利用自动第一性原理计算和多目标贝叶斯优化构建材料探索系统
- 批准号:
21K14401 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Human-Mimetic AI System for Automatic, Passive and Objective Dietary Assessment
用于自动、被动和客观饮食评估的仿人人工智能系统
- 批准号:
10320465 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Automatic Configuration of Preference-based Evolutionary Multi-objective Optimization Algorithms
基于偏好的进化多目标优化算法的自动配置
- 批准号:
21K17824 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists