Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
基本信息
- 批准号:RGPIN-2018-04623
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Maintaining the integrity of buried water infrastructure is at the forefront of priority issues for municipalities across Canada. However, substantial portions of our buried water infrastructure are in need of repair/ rehabilitation, and possible replacement, all of which require significant expenditures. Increased vulnerability to imposed stresses as a result of climate change and urban densification, and avoiding compromised water quality, are examples of challenges complicating the prioritization of investments.*** In response, this research proposal is focused on developing guidance procedures to most effectively direct such expenditures. The merits of dramatically improved data mining and machine learning algorithms, and including the potential to improve the utilization of information now available from evolving smart data acquisition procedures becoming available, will be explored in this research.*** Research insights will include the merits of prioritization to include factors such as health risks, external factors of adjacency of high-cost impacts should pipe failure occur, climate change influencing water demand patterns, urban intensification and the concomitant increased demands that will arise, all of which contribute to the merits of a performance-based management approach for failure prediction assessments.*** Data mining models will be used to improve discovery of patterns, and machine language models will be employed to improve prediction efforts, all with the intent to improve pipe break prediction modeling and to provide better prioritization approaches for types of pipe rehabilitation. The utility of smart infrastructure technology will also be explored to determine the potential to decrease water distribution issues of pipe breaks and maintenance issues.*** This research will train HQP students in municipal engineering water infrastructure (condition evaluation, lifecycle costing, lifecycle prediction, deterioration modeling, machine learning, and data mining approaches). The proposed research will provide direct funding to assist in the training of three PhD and four masters students,one U/G, and a post-doc. The goal is to include the mentoring of grad students in research management and effective communication skills in this critical area of Canadian needs.
保持埋地供水基础设施的完整性是加拿大各城市优先考虑的问题。 然而,我们埋地供水基础设施的很大一部分需要维修/修复,并可能进行更换,所有这些都需要大量支出。气候变化和城市密集化导致的脆弱性增加,以及避免水质受损,都是使投资优先顺序复杂化的挑战的例子。*** 作为回应,本研究提案的重点是制定指导程序,以最有效地指导此类支出。 本研究将探讨显着改进的数据挖掘和机器学习算法的优点,包括通过不断发展的智能数据采集程序提高现有信息利用率的潜力。*** 研究见解将包括以下优点:优先考虑的因素包括健康风险、管道故障发生时邻近高成本影响的外部因素、影响用水需求模式的气候变化、城市集约化以及随之而来的需求增加等,所有这些都有助于提高用水效率基于绩效的管理方法故障预测评估。*** 数据挖掘模型将用于改进模式的发现,机器语言模型将用于改进预测工作,所有这些都是为了改进管道破裂预测建模并为故障类型提供更好的优先级方法。管道修复。 还将探索智能基础设施技术的实用性,以确定减少管道破裂和维护问题的配水问题的潜力。*** 这项研究将对 HQP 学生进行市政工程水基础设施(状况评估、生命周期成本计算、生命周期预测、恶化建模、机器学习和数据挖掘方法)。 拟议的研究将提供直接资金来协助培训三名博士生和四名硕士生、一名大学/研究生和一名博士后。 目标是在加拿大需求的这一关键领域对研究生进行研究管理和有效沟通技巧的指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
McBean, Edward其他文献
First Nations' water sustainability and Security Strategy: Tools and methodologies for community-driven processes for water treatment in Indigenous communities
- DOI:
10.1016/j.techsoc.2017.04.004 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:9.2
- 作者:
Black, Kerry;McBean, Edward - 通讯作者:
McBean, Edward
A risk-based approach to sanitary sewer pipe asset management
- DOI:
10.1016/j.scitotenv.2014.10.040 - 发表时间:
2015-02-01 - 期刊:
- 影响因子:9.8
- 作者:
Baah, Kelly;Dubey, Brajesh;McBean, Edward - 通讯作者:
McBean, Edward
Increased Indigenous Participation in Environmental Decision-Making: A Policy Analysis for the Improvement of Indigenous Health
- DOI:
10.18584/iipj.2016.7.4.5 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:1.3
- 作者:
Black, Kerry;McBean, Edward - 通讯作者:
McBean, Edward
Drinking water supply systems: decreasing advisories and improving treatment through real-time water quality monitoring
- DOI:
10.2166/aqua.2018.091 - 发表时间:
2018-06-01 - 期刊:
- 影响因子:4.3
- 作者:
Black, Kerry;McBean, Edward - 通讯作者:
McBean, Edward
Forecasting impacts of climate change on changes of municipal wastewater production in wastewater reuse projects
- DOI:
10.1016/j.jclepro.2021.129790 - 发表时间:
2021-11-24 - 期刊:
- 影响因子:11.1
- 作者:
Shakeri, Hossein;Motiee, Homayoun;McBean, Edward - 通讯作者:
McBean, Edward
McBean, Edward的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('McBean, Edward', 18)}}的其他基金
Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
- 批准号:
RGPIN-2018-04623 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
- 批准号:
RGPIN-2018-04623 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Blue-green algae mitigation strategies for urban lakes
城市湖泊蓝绿藻缓解策略
- 批准号:
566271-2021 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Watershed Water Security Assessment Under Climate Change and Urbanization Pressures
气候变化和城市化压力下的流域水安全评估
- 批准号:
549242-2019 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Long Term Care Disinfection Protocols for COVID-19
COVID-19 长期护理消毒方案
- 批准号:
553721-2020 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
- 批准号:
RGPIN-2018-04623 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Using AI to predict COVID19 impacts on Canada's health system
使用人工智能预测新冠肺炎 (COVID19) 对加拿大卫生系统的影响
- 批准号:
549866-2020 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Using Wastewater Surveillance for Detection of COVID-19 Virus
利用废水监测检测 COVID-19 病毒
- 批准号:
554592-2020 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Watershed Water Security Assessment Under Climate Change and Urbanization Pressures
气候变化和城市化压力下的流域水安全评估
- 批准号:
549242-2019 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Alliance Grants
Watershed Modelling to Enhance Water Security for the Region of Peel
流域建模可增强皮尔地区的水安全
- 批准号:
532006-2018 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Engage Grants Program
相似国自然基金
连续灾害下关联基础设施系统韧性动态评估与提升策略
- 批准号:72371163
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基础设施中断对社会福祉影响的定量评估与减缓措施优化研究
- 批准号:72304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
极端环境下重大基础设施工程前摄性韧性评估与提升研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
农村数字基础设施的收入分配效应评估、机制研究与优化设计
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市设计视角下交通基础设施与公共空间系统整合的绩效评估及预测模型研究
- 批准号:52108046
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
Prenatal Fatty Acid Supplementation and Early Childhood Asthma and Atopy in Black American Families
美国黑人家庭产前脂肪酸补充剂与儿童早期哮喘和特应性
- 批准号:
10586398 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
ECCO - Evaluation of Outcomes Associated with Community Care Prescribed Opioids
ECCO - 社区护理处方阿片类药物相关结果评估
- 批准号:
10537122 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Conduits: Mount Sinai Health System Translational Science Hub
管道:西奈山卫生系统转化科学中心
- 批准号:
10702195 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别: