Group actions on manifolds and complexes

流形和复形上的群作用

基本信息

  • 批准号:
    RGPIN-2016-05111
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

One of the unifying principles in geometry is that complex systems, such as configurations of planets and stars can often be understood by means of their symmetries. Familiar symmetries include the rotations or reflections of solids in space and the Lorentz transformations of space-time. Discrete invariants and groups of symmetry of continuous motions are studied in algebraic topology, while geometric topology is concerned with the properties of differential manifolds, or higher-dimensional surfaces. Geometry and topology is a flourishing subject for research, with broad connections to other areas of mathematics, science and engineering.***Symmetries of manifolds are related to algebra and number theory through group theory, and to partial differential equations and analysis through differential forms. This proposal describes my recent work in three main areas (i) finite group actions on products of spheres, (ii) smooth and continuous group actions on 4-dimensional manifolds and their connections to gauge theory, and (ii) infinite discrete group actions on high-dimensional manifolds. The new projects include the development of a new coarse geometry for discrete group actions, a comparison of finite groups of differentiable transformations with those defined by algebraic equations on algebraic surfaces, and the study of dynamical and ergodic aspects of infinite groups of transformations on high-dimensional spheres. The goal in each case is to improve our understanding of the many roles of symmetry in mathematical and physical problems.***This research proposal provides many high-level opportunities for training of prospective graduate students and postgraduate researchers, whose future work will have a broad impact on our society. Mathematical research skills related to geometry are now widely used outside of the university setting, such as in the modelling of complex systems, in architectural design, in control theory for aerospace, and in computer vision. Fundamental research at Canadian universities is the key to promoting the next generation of mathematicians and scientists, who are vitally needed to lead the Canadian knowledge-based economy.******************
几何学中的统一原理之一是,通常可以通过它们的对称性来理解复杂的系统,例如行星和恒星的配置。熟悉的对称性包括空间中固体的旋转或反射以及时空的洛伦兹变换。在代数拓扑中研究了离散的不变性和连续运动对称性组,而几何拓扑与差分流形或较高维表面的特性有关。几何和拓扑是研究的繁荣主题,与数学,科学和工程学的其他领域具有广泛的联系。***流形的对称性通过组理论与代数和数字理论有关,以及通过不同形式的部分微分方程和分析。 该提案描述了我最近在三个主要领域的工作(i)对球体产品的有限群体行动,(ii)对4维流形的平稳而连续的群体行动及其与规格理论的联系,以及(ii)无限的离散小组对高维流形的行动。新项目包括开发用于离散组动作的新的粗几何形状,对代数表面上的代数方程定义的有限转换组的有限群体的比较,以及对高维球体上无限转换的动态和怪异方面的研究。在每种情况下,目的是提高我们对对称性在数学和身体问题中的许多作用的理解。与几何相关的数学研究技能现在已在大学环境之外广泛使用,例如在复杂系统的建模,建筑设计中,航空航天控制理论和计算机视觉中的控制理论。加拿大大学的基本研究是促进下一代数学家和科学家的关键,他们在领导基于加拿大知识的经济中至关重要。******************

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hambleton, Ian其他文献

TOWARD REDUCING HEALTH INFORMATION INEQUITIES IN THE CARIBBEAN: OUR EXPERIENCE BUILDING A PARTICIPATORY HEALTH INFORMATICS PROJECT
  • DOI:
    10.18865/ed.30.s1.193
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Wang, Karen;Hambleton, Ian;Nunez-Smith, Marcella
  • 通讯作者:
    Nunez-Smith, Marcella
Dietary Patterns, Food Insecurity, and Their Relationships with Food Sources and Social Determinants in Two Small Island Developing States.
  • DOI:
    10.3390/nu14142891
  • 发表时间:
    2022-07-14
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Bhagtani, Divya;Augustus, Eden;Haynes, Emily;Iese, Viliamu;Brown, Catherine R.;Fesaitu, Jioje;Hambleton, Ian;Badrie, Neela;Kroll, Florian;Saint-Ville, Arlette;Samuels, Thelma Alafia;Forouhi, Nita G.;Benjamin-Neelon, Sara E.;Unwin, Nigel
  • 通讯作者:
    Unwin, Nigel
The Use and Reporting of the Cross-Over Study Design in Clinical Trials and Systematic Reviews: A Systematic Assessment
  • DOI:
    10.1371/journal.pone.0159014
  • 发表时间:
    2016-07-13
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Nolan, Sarah Jane;Hambleton, Ian;Dwan, Kerry
  • 通讯作者:
    Dwan, Kerry
Social determinants of prostate cancer in the Caribbean: a systematic review and meta-analysis
  • DOI:
    10.1186/s12889-018-5696-y
  • 发表时间:
    2018-07-20
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Brown, Catherine R.;Hambleton, Ian;Sobers-Grannum, Natasha
  • 通讯作者:
    Sobers-Grannum, Natasha
Experiences with SARS-CoV-2 (Covid-19) in Trinidad and Tobago, a small island developing state: realities and opportunities.
  • DOI:
    10.1016/j.lana.2023.100589
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dookeeram, Darren;Hariharan, Seetharaman;Hambleton, Ian;Ali, Kareema;Teelucksingh, Surujpaul;Ramsewak, Samuel;Dookeeram, Dave;Maharaj, Sandeep Bhupendra
  • 通讯作者:
    Maharaj, Sandeep Bhupendra

Hambleton, Ian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hambleton, Ian', 18)}}的其他基金

Geometry and Topology of Manifolds
流形的几何和拓扑
  • 批准号:
    RGPIN-2022-04539
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
  • 批准号:
    RGPIN-2016-05111
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
  • 批准号:
    RGPIN-2016-05111
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
  • 批准号:
    RGPIN-2016-05111
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
FIELDS - The Fields Institute for Research in the Mathematical Sciences
FIELDS - 菲尔兹数学科学研究所
  • 批准号:
    342058-2014
  • 财政年份:
    2018
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
Group actions on manifolds and complexes
流形和复形上的群作用
  • 批准号:
    RGPIN-2016-05111
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
FIELDS - The Fields Institute for Research in the Mathematical Sciences
FIELDS - 菲尔兹数学科学研究所
  • 批准号:
    342058-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
Blockchain research seminar series
区块链研究研讨会系列
  • 批准号:
    521070-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Connect Grants Level 2
FIELDS - The Fields Institute for Research in the Mathematical Sciences
FIELDS - 菲尔兹数学科学研究所
  • 批准号:
    342058-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Thematic Resources Support in Mathematics and Statistics
The Institute Innovation Platform
研究院创新平台
  • 批准号:
    468798-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Partnerships Innovation Platform

相似国自然基金

基于动作表示与生成模型及人类反馈强化学习的智能运动教练研究
  • 批准号:
    62373183
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
列车动荷载扰动作用下饱和软黄土地铁隧道衬砌破坏机理研究
  • 批准号:
    52308374
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
结构化文本引导的三维人体动作生成方法研究
  • 批准号:
    62306031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钻柱纵向振动作用下铝合金钻杆杆体螺纹高温疲劳失效机理与寿命预测
  • 批准号:
    42302349
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于层级约束解析动力学建模的多移动作业机器人避碰协同控制
  • 批准号:
    52305084
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Algebraic, Analytic, and Dynamical Properties of Group Actions on 1-Manifolds and Related Spaces
职业:1-流形和相关空间上群作用的代数、解析和动力学性质
  • 批准号:
    2240136
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Continuing Grant
Group actions on manifolds and complexes
流形和复形上的群作用
  • 批准号:
    RGPIN-2016-05111
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Group Actions on Manifolds and Related Spaces: Regularity, Structure, and Complexity
流形及相关空间的群作用:规则性、结构和复杂性
  • 批准号:
    2002596
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
  • 批准号:
    2003892
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Continuing Grant
Group actions on manifolds and complexes
流形和复形上的群作用
  • 批准号:
    RGPIN-2016-05111
  • 财政年份:
    2020
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了