Geometry and Topology of Manifolds
流形的几何和拓扑
基本信息
- 批准号:RGPIN-2022-04539
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall objective of my research program is the advancement of knowledge about the geometry and topology of manifolds. One of the unifying principles in geometry is that complex systems, such as configurations of planets and stars can often be understood by means of their symmetries. Familiar symmetries include the rotations or reflections of solids in space and the Lorentz transformations of space-time. Discrete invariants and groups of symmetry of continuous motions are studied in algebraic topology, while geometric topology is concerned with the properties of differential manifolds, or higher-dimensional surfaces. Geometry and topology is a flourishing subject for research, with active connections to other areas of mathematics, medicine, science and engineering. Symmetries of manifolds are related to algebra and number theory through group theory, and to partial differential equations and analysis through differential forms. This proposal describes recent work towards my long-term goals in four main areas (i) smooth and continuous group actions in dimensions 3 and 4, and their connections to gauge theory, (ii) classification of 4-manifolds with right angled Artin fundamental groups, (iii) finite group actions on products of spheres, and (iv) symmetries of smooth and topological Kervaire manifolds. Over the next five years I plan to open up several new directions, including the study of the space of homotopy self-equivalences of manifolds, the study of group actions in surface bundles over surfaces, and the development of local-global methods in surgery theory for infinite discrete groups. These lines of inquiry address basic problems, with a high potential for significant impact if the goals are achieved. This proposal offers high-level interdisciplinary opportunities for prospective graduate students and postgraduates, whose future work will shape our society. Geometric topology has applications in biology, through the knotting and linking of replicating DNA strands. Algebraic topology provides effective methods for analyzing large data sets, through "persistent homology". A geometrical perspective is essential: mathematical models in most realistic situations are multi-dimensional and involve spatial as well as temporal constraints (e.g. the recent "topology-preserving" neural net models for forest fire prediction and control). Fundamental research at Canadian universities is critical to providing the next generation of mathematicians and scientists. Our training activities, based on principles of equity and inclusion, will help to remove barriers to success and promote a more diverse workforce in a knowledge-based economy.
我的研究计划的总体目的是关于多种形态和拓扑拓扑的知识的进步。几何学中的统一原理之一是,通常可以通过它们的对称性来理解复杂的系统,例如行星和恒星的配置。熟悉的对称性包括空间中固体的旋转或反射以及时空的洛伦兹变换。在代数拓扑中研究了离散的不变性和连续运动对称性组,而几何拓扑与差分流形或较高维表面的特性有关。几何和拓扑是研究繁荣的主题,并与其他数学,医学,科学和工程领域具有积极的联系。流形的对称性与代数和数字理论有关,以及通过差分形式的部分微分方程和分析。该提议描述了我在四个主要领域的长期目标(i)在第3和4方面的平稳而连续的小组行动,以及它们与量规理论的联系,(ii)对4个模型的分类,具有直角的Artin基本组,(iii)Spheres产品的有限群体动作,以及(IV)Symmetries和(IV)Smplace和Topolical Kervere Sormodic sormodic sormodic sormodic sormole sormole sormods sormods sormods sormods sormods sormods sormods sormolds sormolds sormolds sormolds sormolds。 在接下来的五年中,我计划打开多个新方向,包括研究歧管同质拷贝自我等量的研究,对表面上的表面束中的群体作用的研究以及无限离散组手术理论中局部全球方法的发展。这些探究线解决了基本问题,如果实现目标,则具有很大的重大影响潜力。该建议为准研究生和研究生提供了高级跨学科的机会,他们的未来工作将塑造我们的社会。几何拓扑通过复制DNA链的打结和联系在生物学中应用。代数拓扑提供了通过“持续同源性”来分析大数据集的有效方法。几何视角是必不可少的:在大多数现实情况下,数学模型是多维的,涉及空间和时间约束(例如,最近用于森林火灾预测和控制的“拓扑拓扑”神经网络模型)。 加拿大大学的基本研究对于提供下一代数学家和科学家至关重要。基于公平和包容性原则,我们的培训活动将有助于消除成功的障碍,并在基于知识的经济中促进更多样化的劳动力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hambleton, Ian其他文献
TOWARD REDUCING HEALTH INFORMATION INEQUITIES IN THE CARIBBEAN: OUR EXPERIENCE BUILDING A PARTICIPATORY HEALTH INFORMATICS PROJECT
- DOI:
10.18865/ed.30.s1.193 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:3.2
- 作者:
Wang, Karen;Hambleton, Ian;Nunez-Smith, Marcella - 通讯作者:
Nunez-Smith, Marcella
Dietary Patterns, Food Insecurity, and Their Relationships with Food Sources and Social Determinants in Two Small Island Developing States.
- DOI:
10.3390/nu14142891 - 发表时间:
2022-07-14 - 期刊:
- 影响因子:5.9
- 作者:
Bhagtani, Divya;Augustus, Eden;Haynes, Emily;Iese, Viliamu;Brown, Catherine R.;Fesaitu, Jioje;Hambleton, Ian;Badrie, Neela;Kroll, Florian;Saint-Ville, Arlette;Samuels, Thelma Alafia;Forouhi, Nita G.;Benjamin-Neelon, Sara E.;Unwin, Nigel - 通讯作者:
Unwin, Nigel
The Use and Reporting of the Cross-Over Study Design in Clinical Trials and Systematic Reviews: A Systematic Assessment
- DOI:
10.1371/journal.pone.0159014 - 发表时间:
2016-07-13 - 期刊:
- 影响因子:3.7
- 作者:
Nolan, Sarah Jane;Hambleton, Ian;Dwan, Kerry - 通讯作者:
Dwan, Kerry
Social determinants of prostate cancer in the Caribbean: a systematic review and meta-analysis
- DOI:
10.1186/s12889-018-5696-y - 发表时间:
2018-07-20 - 期刊:
- 影响因子:4.5
- 作者:
Brown, Catherine R.;Hambleton, Ian;Sobers-Grannum, Natasha - 通讯作者:
Sobers-Grannum, Natasha
Children and the coronavirus disease 2019 pandemic: a Caribbean perspective.
- DOI:
10.26633/rpsp.2022.135 - 发表时间:
2022 - 期刊:
- 影响因子:2.6
- 作者:
Evans-Gilbert, Tracy;Lashley, Paula Michele;Lerebours, Emmeline;Quee, Corrine Sin;Singh-Minott, Indira;Fernandes, Maritza;Thomas, Joycelyn Walter;Nelson, Beverly;Braithwaite, Jozan;Hambleton, Ian - 通讯作者:
Hambleton, Ian
Hambleton, Ian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hambleton, Ian', 18)}}的其他基金
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
FIELDS - The Fields Institute for Research in the Mathematical Sciences
FIELDS - 菲尔兹数学科学研究所
- 批准号:
342058-2014 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
FIELDS - The Fields Institute for Research in the Mathematical Sciences
FIELDS - 菲尔兹数学科学研究所
- 批准号:
342058-2014 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
Blockchain research seminar series
区块链研究研讨会系列
- 批准号:
521070-2017 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Connect Grants Level 2
FIELDS - The Fields Institute for Research in the Mathematical Sciences
FIELDS - 菲尔兹数学科学研究所
- 批准号:
342058-2014 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
The Institute Innovation Platform
研究院创新平台
- 批准号:
468798-2014 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Partnerships Innovation Platform
相似国自然基金
基于高阶读数的拓扑关联结构域识别和比对方法研究
- 批准号:62372156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大功率DLA模块液冷微通道力热耦合机理与多要素协同拓扑优化研究
- 批准号:52306111
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
扭转双层光子系统非厄米拓扑效应研究
- 批准号:12304340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机非线性复杂系统的拓扑结构及其在交叉学科中的应用
- 批准号:12375034
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质拓扑绝缘子介导的Linc-OP转录紊乱在老年相关骨质疏松症发生中的作用与机制研究
- 批准号:82371600
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
- 批准号:
2231286 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
- 批准号:
2203912 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
- 批准号:
2102018 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
Canada Research Chair In Geometry And Topology Of Manifolds
加拿大流形几何与拓扑研究主席
- 批准号:
CRC-2016-00234 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Canada Research Chairs