CAREER: Algebraic, Analytic, and Dynamical Properties of Group Actions on 1-Manifolds and Related Spaces
职业:1-流形和相关空间上群作用的代数、解析和动力学性质
基本信息
- 批准号:2240136
- 负责人:
- 金额:$ 55.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A group is a mathematical abstraction of symmetries of a physical object or a theoretical space. Groups are fundamental objects in mathematics that also emerge in various applications such as in computer science and physics. The algebraic notion of a group associates to a set a binary operation, like multiplication, which satisfies a list of axioms. Groups emerge naturally as symmetries of various types of concrete or abstract spaces in mathematics. There is an intricate relationship between the geometric properties of these spaces and the algebraic properties of their groups of symmetries. The PI will continue his investigation of the landscape of infinite groups that emerge as symmetries of the most natural spaces in mathematics, the circle and the real line. The PI will organize two research workshops aimed at graduate students, and two research experiences programs for undergraduates. These shall be aimed at training a diverse body of students to become future leaders in mathematics. These activities will incorporate computational methods into the students' mathematical exploration of the landscape of infinite groups.This project is jointly funded by Topology and the Established Program to Stimulate Competitive Research (EPSCoR). The PI will investigate the relationship between the algebraic structure of left orderable groups and the topological and dynamical properties of their actions on 1-manifolds and the cantor space. One goal is to investigate the class of finitely presented, infinite, simple groups, and exhibit new conceptual phenomena. This involves investigating notions such as uniform simplicity, and whether there is a finitely presented infinite simple group that acts on the real line by homeomorphisms. Finally, the PI will investigate a family of closely interconnected open problems emerging in combinatorial group theory. This includes a systematic study of normal generation in the class of finitely generated perfect groups, the conjectured existence of non-abelian free subgroups in non-indicable finitely generated left orderable groups, and fundamental groups of subcomplexes of aspherical 2-dimensional CW complexes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组是物理对象或理论空间对称性的数学抽象。小组是数学中的基本对象,在计算机科学和物理学等各种应用中也出现。组的代数概念将二进制操作(如乘法)相关联,它满足公理列表。小组自然地作为数学中各种类型的混凝土或抽象空间的对称性出现。这些空间的几何特性与其对称性组的代数特性之间存在复杂的关系。 PI将继续对无限群体的景观进行调查,这些群体成为数学,圈子和真实线中最自然空间的对称性。 PI将组织两个针对研究生的研究研讨会,并为本科生提供两项研究经验。这些应旨在培训各种各样的学生成为数学领域的未来领导者。这些活动将将计算方法纳入学生对无限群体景观的数学探索。该项目由拓扑和既定计划(EPSCOR)共同资助。 PI将研究左有序基团的代数结构与其对1个manifolds和Cantor空间的作用的拓扑和动力学特性之间的关系。一个目标是研究有限呈现的,无限,简单的群体的类别,并展示新的概念现象。这涉及调查诸如统一简单性之类的概念,以及是否存在有限的无限简单群体,该群体由同构形态学作用在真实的线上。最后,PI将研究一个在组合群体理论中出现的紧密相互联系的开放问题的家庭。这包括对有限生成的完美群体中正常产生的系统研究,在非诱使有限生成的左有订购组中的非阿布尔自由亚组存在,以及基本的基本群体组的基本群体组的基本群体组成的二维CW复合物,这些奖项反映了NSF的合法传统和范围的依据,该奖项是通过智力和范围的构建范围的,是由智力构建的依据。 标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yash Lodha其他文献
Two new families of finitely generated simple groups of homeomorphisms of the real line
- DOI:
10.1016/j.jalgebra.2023.07.020 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
James Hyde;Yash Lodha;Cristóbal Rivas - 通讯作者:
Cristóbal Rivas
Yash Lodha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
研究模空间的代数拓扑方法及其在同伦论、凝聚态物理和时间序列分析中的应用
- 批准号:12371069
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
量子对称在算子代数中若干分析问题和应用
- 批准号:12371124
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
延时微分—代数方程的数值分析及反馈稳定化
- 批准号:12371399
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
复分析方法在代数相关性问题中的应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用凸分析理论与零乘决定Banach代数探讨保持问题
- 批准号:12201224
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
- 批准号:
DP240100186 - 财政年份:2024
- 资助金额:
$ 55.3万 - 项目类别:
Discovery Projects
全種数グロモフ・ウィッテン理論に現れる代数解析的可積分構造の研究
所有 Gromov-Witten 理论中出现的代数解析可积结构的研究
- 批准号:
24K06724 - 财政年份:2024
- 资助金额:
$ 55.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of analytic and algebraic varieties
解析几何和代数簇
- 批准号:
2301374 - 财政年份:2023
- 资助金额:
$ 55.3万 - 项目类别:
Standard Grant
Research on p-adic analytic cohomology of algebraic varieties and application to number theory
代数簇的p-adic解析上同调研究及其在数论中的应用
- 批准号:
22K13899 - 财政年份:2022
- 资助金额:
$ 55.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
学習者の視線計測による代数的思考の分析と評価
通过测量学习者的注视来分析和评估代数思维
- 批准号:
22K02997 - 财政年份:2022
- 资助金额:
$ 55.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)