Spectral Hilbert Geometry
谱希尔伯特几何
基本信息
- 批准号:524817-2018
- 负责人:
- 金额:$ 0.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:University Undergraduate Student Research Awards
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
没有摘要-Aucun Sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giorshev, Troy其他文献
Giorshev, Troy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
特殊初值下可积方程解的长时间渐近分析:Riemann-Hilbert方法
- 批准号:12371249
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于再生核希尔伯特空间的函数型张量回归
- 批准号:12301343
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Einstein-Bianchi 方程及 Hilbert 复形中相关问题的非标准一阶系统最小二乘有限元方法研究
- 批准号:12371371
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
Riemann-Hilbert穿衣方法在多分量可积系统中的应用
- 批准号:12301308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两类区域上再生核希尔伯特空间中的n-最佳核逼近问题
- 批准号:12301101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Hilbert-Samuel formula over adelic curves
adelic 曲线上的 Hilbert-Samuel 公式
- 批准号:
20J20125 - 财政年份:2020
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Resolvent Degree, Hilbert's 13th Problem and Geometry
职业:解决度、希尔伯特第十三题和几何
- 批准号:
1944862 - 财政年份:2020
- 资助金额:
$ 0.33万 - 项目类别:
Continuing Grant
q-analogues of multiple zeta values and their applications in geometry
多个 zeta 值的 q 类似物及其在几何中的应用
- 批准号:
19K14499 - 财政年份:2019
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New applications of the geometry of Shimura varieties to number theory on totally real number fields
志村簇几何在全实数域数论中的新应用
- 批准号:
15K17518 - 财政年份:2015
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Low Dimensional Cohomology and the Geometry of Hilbert Space
低维上同调和希尔伯特空间的几何
- 批准号:
1312928 - 财政年份:2013
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant