Efficient Algorithms for Cognitive Radio Networks
认知无线电网络的高效算法
基本信息
- 批准号:RGPIN-2018-05523
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cognitive radio (CR) is a radio with an intelligent layer of awareness and learning necessary to achieve optimal performance under dynamic and unpredictable conditions. CR can dynamically adapt its behavior, through its awareness, to the radio environment and spectrum policy. One of the most critical components of CR technology is spectrum sensing (SS). By sensing and adapting to the environment, a CR is able to fill in spectrum holes and serve secondary users without harmful interference to the primary users. SS techniques can be categorized into two categories: local SS, and collaborative SS (CSS). There are three main local techniques which are: matched filter detection technique, energy detection technique, and cyclostatinary detection. CSS significantly alleviates the deterioration of sensing performance due to destructive radio conditions. Software-defined radio (SDR) is a key enabling technology to realize CRs. ******The proposal considers improved algorithms for CR Networks (CRNs). The proposal will investigate efficient blind SS/CSS techniques that would lead to decrease sensing time while improving the probability of detection; overhead compromise will be considered. The proposal will also investigate cluster-based SS (CBSS) approaches for CRNs that would maintain high performance under noise uncertainty, low signal-to-noise-ratio (SNR) conditions, and multipath fading conditions. Scenarios, where more than one primary user exists, will be investigated and analyzed. Performance enhancement of local SS using adaptive joint sensing threshold and sensing time will be investigated as well as enhancing energy efficiency for wideband CSS in CRNs using coalitional game theory.******Vehicular ad hoc network (VANET) is on the rise due to increasing demands for vehicles to communicate with each other and with the infrastructure to ensure road safety and to introduce new services. The proposal considers efficient solutions for CR-VANETs that would consider sensing the spectrum, forming clusters while on the move. SS techniques under fast fading will be investigated to serve CR-VANET. Methods to protect the primary user (PU) in CR-VANET need to be investigated and developed. Efficient medium access control (MAC) schemes that would lead to enhance the sensing performance in CR VANET will be investigated. Investigating the impact of changing mobility parameters (high speed, changeable topology, etc.) on sensing performance and accuracy will be investigated. ***This proposal aims to provide a research environment where graduate and undergraduate students get involved in state-of-the-art topics in computer-communication networks that definitely will enhance their potential and knowledge.
认知无线电 (CR) 是一种具有智能意识和学习层的无线电,它是在动态和不可预测的条件下实现最佳性能所必需的。 CR 可以通过其感知动态地调整其行为以适应无线电环境和频谱政策。 CR 技术最关键的组成部分之一是频谱感知 (SS)。通过感知和适应环境,CR 能够填补频谱空洞并为次要用户提供服务,而不会对主要用户造成有害干扰。 SS技术可以分为两类:本地SS和协作SS(CSS)。局部技术主要有三种:匹配滤波器检测技术、能量检测技术和循环静态检测技术。 CSS 显着缓解了由于破坏性无线电条件导致的传感性能恶化。软件定义无线电(SDR)是实现CR的关键使能技术。 ******该提案考虑改进 CR 网络 (CRN) 的算法。该提案将研究有效的盲 SS/CSS 技术,从而减少传感时间,同时提高检测概率;将考虑开销妥协。该提案还将研究 CRN 的基于集群的 SS (CBSS) 方法,该方法将在噪声不确定性、低信噪比 (SNR) 条件和多径衰落条件下保持高性能。将调查和分析存在多个主要用户的场景。将研究使用自适应联合感知阈值和感知时间增强本地 SS 的性能,以及使用联盟博弈论提高 CRN 中宽带 CSS 的能源效率。****** 车载自组织网络 (VANET) 正在兴起,因为对车辆之间以及与基础设施之间通信的需求不断增长,以确保道路安全并引入新服务。该提案考虑了 CR-VANET 的有效解决方案,该解决方案将考虑感知频谱,在移动时形成集群。将研究快衰落下的SS技术以服务CR-VANET。需要研究和开发保护 CR-VANET 中主要用户 (PU) 的方法。将研究有效的媒体访问控制(MAC)方案,以提高 CR VANET 中的传感性能。将研究改变移动性参数(高速、可变拓扑等)对传感性能和精度的影响。 ***该提案旨在提供一个研究环境,让研究生和本科生参与计算机通信网络中最先进的主题,这肯定会增强他们的潜力和知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AbdelRaheem, Esam其他文献
AbdelRaheem, Esam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AbdelRaheem, Esam', 18)}}的其他基金
Efficient Algorithms for Cognitive Radio Networks
认知无线电网络的高效算法
- 批准号:
RGPIN-2018-05523 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Efficient Algorithms for Cognitive Radio Networks
认知无线电网络的高效算法
- 批准号:
RGPIN-2018-05523 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Efficient Algorithms for Cognitive Radio Networks
认知无线电网络的高效算法
- 批准号:
RGPIN-2018-05523 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Efficient Algorithms for Cognitive Radio Networks
认知无线电网络的高效算法
- 批准号:
RGPIN-2018-05523 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Monitoring and controlling unit for the vegawatt system
vegawatt 系统的监控单元
- 批准号:
469976-2014 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Design and VLSI implementations of DSP algorithms for communication systems
通信系统 DSP 算法的设计和 VLSI 实现
- 批准号:
288185-2006 - 财政年份:2008
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Design and VLSI implementations of DSP algorithms for communication systems
通信系统 DSP 算法的设计和 VLSI 实现
- 批准号:
288185-2006 - 财政年份:2007
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Design and VLSI implementations of DSP algorithms for communication systems
通信系统 DSP 算法的设计和 VLSI 实现
- 批准号:
288185-2006 - 财政年份:2006
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
System-on-a-chip (SoC) platform for software defined radio (SDR)
用于软件定义无线电 (SDR) 的片上系统 (SoC) 平台
- 批准号:
288185-2004 - 财政年份:2004
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于自主进化神经网络算法的老年患者术后谵妄及远期认知功能障碍风险预警模型研究
- 批准号:62376168
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
数字化平台用户的算法认知、反馈与治理
- 批准号:72301009
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向认知任务特异性脑龄预测的神经网络结构搜索算法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Accelerating digital cognitive screening for Alzheimer's disease in the Primary Care Setting
加速初级保健机构中阿尔茨海默病的数字认知筛查
- 批准号:
10664618 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
An Explainable Unified AI Strategy for Efficient and Robust Integrative Analysis of Multi-omics Data from Highly Heterogeneous Multiple Studies
一种可解释的统一人工智能策略,用于对来自高度异质性多项研究的多组学数据进行高效、稳健的综合分析
- 批准号:
10729965 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Longitudinal validation of retinal biomarkers against cerebral imaging in preclinical Alzheimer's disease
针对临床前阿尔茨海默病脑成像的视网膜生物标志物的纵向验证
- 批准号:
10524682 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Longitudinal validation of retinal biomarkers against cerebral imaging in preclinical Alzheimer's disease
针对临床前阿尔茨海默病脑成像的视网膜生物标志物的纵向验证
- 批准号:
10704641 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Efficient Algorithms for Cognitive Radio Networks
认知无线电网络的高效算法
- 批准号:
RGPIN-2018-05523 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual