Quantum Matter 'On-a-Chip' II
量子物质“片上”II
基本信息
- 批准号:RGPIN-2014-06424
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mid and long-term goal of our team at McGill is to elucidate new quantum phases of matter `on-a-chip' engineered in semiconductor electronic and fluidic structures. By 'quantum matter', I mean phases of matter whose behaviour is dictated by quantum rules rather than the more conventional newtonian physics that surrounds us. By `on-a-chip', I mean on a platform similar to the processors found in modern computers. Material-wise, we use extremely low-disorder GaAs/AlGaAs grown in the highest mobility (i.e. cleanest) Molecular Beam Epitaxy (MBE) facility in the World (Princeton), as well as the cleanest material in Nature, 3He near absolute zero. Starting from raw semiconducting materials, we tailor-fabricate structures for electrons, or nanoholes for quantum fluids, using cutting-edge clean room fabrication processes evolved from the nanotech community. When the existing tools simply do not exist, we develop them and at times we file them for IP protection (patent) with McGill so as to promote the tech transfer. Below are the experiments we propose to pursue under the tenure of this grant:1) Thermodynamic Signature of a Non-abelian Quantum PhaseIn elementary quantum physics textbooks, we learn that all (identical) quantum particles can be classified into two categories, according to their properties upon exchange. These two types of particles are fermions (such as electrons, protons, etc) and bosons (photons, 4He, etc). While correct in three dimensions, this need not to be true in two-dimensions where quantum statistics may exist that differ from the boson and fermion case. This project intends to demonstrate the existence of such non-abelian quantum phases by way of thermodynamic measurements 'on-a-chip'.2) Coulomb drag and Tomonaga-Luttinger Liquid in Quantum WiresIn quantum physics, one-dimensional correlated states can be modeled via a theory with exact solutions known as the Tomonaga-Luttinger liquid model. Despite its mathematical elegance, little is known experimentally regarding the behaviour of one-dimensional quantum systems. We have recently been able to fabricate quantum wires coupled in the vertical geometry by less than 15 nm, a World first. This projects thus intends to unravel the Luttinger physics that is predicted to occur in clean quantum wires by way of Coulomb drag measurements. 3) A Quantum Faucet: Quantized Mass Flow at the NanoscaleA clean quantum wire has its conductance quantuzed in units of 2e^/h, i.e. it depends only on the fundamental constants e and h. The question I am posing here is: could similar physics be observed in the mass flow of a real fluid system where the pressure gradient, the analogue to a voltage drop in a device, drives the flow (as in a faucet)? This project aims to experimentally demonstrate that at the nanoscale, for a quantum system, the conductance for the pipe should be quantized in unit of G_m=2m^2/h, the fundamental quantum of mass flow. 4) 'Sonic' Black Hole and the Unruh EffectBlack holes are ubiquitous in the Universe, and despite their great interest, the celebrated 'black hole evaporation' predicted by Hawking in 1974 was never confirmed by observation. In 1981, Canadian physicist Unruh showed that the Euler equation describing the flow of an inviscid fluid supports a metric that has the same mathematical structure as the Schwarzschild metric for the black hole horizon. Using similar arguments used by Hawking, Unruh predicted 'Hawking radiation' of a sonic black hole for high-speed fluid flow. This project intends to study the 'conjectured' acoustic horizon predicted to occur in transsonic fluid flow, and explore experimentally the analogy between black hole physics and fluid dynamics.
我们麦吉尔团队的中长期目标是阐明半导体电子和流体结构中“芯片上”物质的新量子相。我所说的“量子物质”是指物质的相,其行为由量子规则决定,而不是由我们周围更传统的牛顿物理学决定。我所说的“片上”是指在类似于现代计算机中的处理器的平台上。在材料方面,我们使用在世界上迁移率最高(即最干净)的分子束外延 (MBE) 设施(普林斯顿)中生长的极低无序 GaAs/AlGaAs,以及自然界中最干净的材料,3He 接近绝对零。从半导体原材料开始,我们使用从纳米技术界发展而来的尖端洁净室制造工艺,定制制造电子结构或量子流体纳米孔。当现有工具根本不存在时,我们会开发它们,有时我们会向麦吉尔申请知识产权保护(专利),以促进技术转让。以下是我们建议在本次资助期间进行的实验:1)非阿贝尔量子相的热力学特征在基础量子物理教科书中,我们了解到所有(相同的)量子粒子都可以根据它们的性质分为两类:交换时的属性。这两类粒子是费米子(如电子、质子等)和玻色子(光子、4He等)。虽然在三维中是正确的,但在二维中不一定是正确的,在二维中可能存在与玻色子和费米子情况不同的量子统计。该项目旨在通过“片上”热力学测量来证明这种非阿贝尔量子相的存在。2) 量子线中的库仑阻力和 Tomonaga-Luttinger 液体在量子物理学中,可以对一维相关态进行建模通过称为 Tomonaga-Luttinger 液体模型的精确解理论。尽管数学上很优雅,但实验上对一维量子系统的行为知之甚少。我们最近能够制造出小于 15 nm 的垂直几何耦合量子线,这是世界首创。因此,该项目旨在通过库仑阻力测量来揭示预计在干净的量子线中发生的卢廷格物理现象。 3)量子龙头:纳米尺度的量子化质量流干净的量子线的电导以2e^/h为单位量子化,即它仅取决于基本常数e和h。我在这里提出的问题是:在真实流体系统的质量流量中是否可以观察到类似的物理现象,其中压力梯度(类似于设备中的电压降)驱动流量(如在水龙头中)?该项目旨在通过实验证明,在纳米尺度上,对于量子系统,管道的电导应以质量流的基本量子 G_m=2m^2/h 为单位进行量化。 4)“声波”黑洞和安鲁效应黑洞在宇宙中无处不在,尽管人们对它们很感兴趣,但霍金在 1974 年预言的著名的“黑洞蒸发”从未被观测证实。 1981 年,加拿大物理学家 Unruh 证明,描述无粘流体流动的欧拉方程支持的度量与黑洞视界的史瓦西度量具有相同的数学结构。使用霍金使用的类似论点,昂鲁预测了音速黑洞的“霍金辐射”,以实现高速流体流动。该项目旨在研究跨音速流体流动中预测出现的“推测”声学视界,并通过实验探索黑洞物理学和流体动力学之间的类比。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gervais, Guillaume其他文献
Gervais, Guillaume的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gervais, Guillaume', 18)}}的其他基金
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2019
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2019
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Quantum Matter 'On-a-Chip' II
量子物质“片上”II
- 批准号:
RGPIN-2014-06424 - 财政年份:2018
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Quantum Matter 'On-a-Chip' II
量子物质“片上”II
- 批准号:
RGPIN-2014-06424 - 财政年份:2018
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Probing matter-antimatter asymmetry with the muon electric dipole moment
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:
面向军事情报的多媒体大数据分析与展示
- 批准号:U1435211
- 批准年份:2014
- 资助金额:150.0 万元
- 项目类别:联合基金项目
我的事情我做主--房颤患者如何参与治疗决策
- 批准号:81320001
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:专项基金项目
资源受限网络控制系统的必要性通讯与分布式控制协同研究
- 批准号:61273114
- 批准年份:2012
- 资助金额:71.0 万元
- 项目类别:面上项目
微扰量子色动力学方法及在强子对撞机的应用和暗物质的研究
- 批准号:10975004
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
相似海外基金
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Frontiers of Quantum Matter On-a-Chip!
芯片上量子物质的前沿!
- 批准号:
RGPIN-2019-04887 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual