Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
基本信息
- 批准号:RGPIN-2014-05675
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Important challenges and opportunities in information technology and alternative energy can be addressed using novel thin film materials and nanostructures. The context for this proposal falls into the following areas: spintronics; magnonics; magnetic recording (hard drives [HDs]); and photovoltaics.Spin-based devices present a number of opportunities and advantages compared to conventional charge-based electronics. As device density is increased, overall energy dissipation increases, which is a considerable obstacle in current electronic architecture. As well as Joule heating, the effects of electromigration and capacitive coupling are also major concerns. Spin-based devices overcome these problems by processing and transporting information using pure spin currents, without net charge flow. Information stored by magnetic means is also inherently non-volatile.Another way of transferring information is via spin waves. My research will explore a new direction – magnonic crystals. These are arrays of magnetic nanostructures, coupled by dipolar forces, in which band-structure engineering of the spin wave dispersion allows for the controlled propagation of spin waves. Inspired by photonic band-gap materials, this is a very promising new direction in spintronics.In the area of magnetic recording (the main way of storing information for more than 30 years), there is a search for new composite materials, structures, and magnetization reversal schemes, with the goal of creating thermally stable magnetization and manipulating it at ever-decreasing dimensions. To increase the recording density of HDs, the diameter of magnetic grains in recording media has to be reduced. This requires the use of ordered 3d-4d, 3d-5d, and 3d-4f compounds, which have much larger magnetic anisotropy values than the disordered hcp CoPt, used in current media. There are two main challenges that we are addressing in collaboration with the recording industry: 1) fabrication of ordered magnetic compounds that needs to be carried out above 400°C (current media are fabricated at ambient temperature); and 2) the design of a nonuniform magnetization reversal along the direction of the grain growth to facilitate the magnetization reversal in grains with such large magnetic anisotropy.We are part of the large research effort at SFU aiming to develop novel materials for photovoltaic applications. One goal is to develop low cost, high efficiency solar cells. II-VI compound semiconductors, in particular quaternary CZTS (copper tin zinc sulfide) compounds, have drawn considerable attention because they consist of abundant, low-cost materials. The quaternary compounds have increased flexibility in material properties, relative to binary and ternary semiconductors, but at the same, they have a large variety of intrinsic lattice defects, which significantly deteriorate their photovoltaic performance. We plan to grow single crystal CZTS films along different crystallographic orientations and investigate the effect of growth on the defect density, the presence of secondary phases, and the electrical properties of CZTS films. A long term objective is to explore ways to integrate III-V and II-VI semiconductors into multijunction solar cells using the extensive III-V facilities at SFU. Solar cell research is vital to making Canadian industry world leaders in the field. Developing this technology could significantly reduce Canada’s greenhouse emissions, slow global warming, and demonstrate Canadian leadership with regards to environmental protection.
信息技术和替代能源领域的重要挑战和机遇可以通过新型薄膜材料和纳米结构来解决:自旋电子学;磁记录(硬盘[HD]);与传统的基于电荷的电子器件相比,基于电荷的器件呈现出许多机会和优势,随着器件密度的增加,整体能量耗散增加,这是当前电子架构中的一个相当大的障碍。电迁移和电容耦合也是主要问题,基于自旋的器件通过使用纯自旋电流处理和传输信息来克服这些问题,而无需净电荷流,通过磁性方式存储的信息本质上也是非易失性的。我的研究将探索一个新的方向——磁振子晶体,它们是通过偶极力耦合的磁性纳米结构阵列,其中自旋波色散的能带结构工程允许自旋波的受控传播。受光子带隙材料的启发,这是自旋电子学中非常有前途的新方向。在磁记录(30多年来存储信息的主要方式)领域,人们正在寻找新的复合材料、结构和磁化反转方案,其目标是产生热稳定的磁化并在不断减小的尺寸上对其进行操作,为了提高HD的记录密度,必须减小记录介质中磁颗粒的直径,这需要使用有序的磁化颗粒。 3d-4d、3d-5d 和 3d-4f 化合物的磁各向异性值比当前媒体中使用的无序 hcp CoPt 大得多,我们正在与唱片行业合作解决两个主要挑战: 1) 有序磁性化合物的制造需要在 400°C 以上进行(当前介质是在环境温度下制造的);2) 沿 方向的非均匀磁化反转的设计;晶粒生长以促进具有如此大的磁各向异性的晶粒的磁化反转。我们是 SFU 的大型研究工作的一部分,旨在开发用于光伏应用的新型材料。 VI 化合物半导体,特别是四元 CZTS(硫化铜锡锌)化合物,由于由丰富的低成本材料组成,相对于二元和二元化合物在材料性能方面具有更大的灵活性,因此受到了广泛的关注。三元半导体,但同时,它们具有各种各样的本征晶格缺陷,这显着恶化了它们的光伏性能。我们计划沿着不同的晶体取向生长单晶CZTS薄膜,并研究生长对缺陷密度和存在的影响。长期目标是探索利用 SFU 太阳能电池研究中广泛的 III-V 族设备将 III-V 族和 II-VI 族半导体集成到多结太阳能电池中的方法。开发这项技术对于使加拿大工业成为该领域的世界领导者至关重要,可以显着减少加拿大的温室气体排放,减缓全球变暖,并展示加拿大在环境保护方面的领导地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Girt, Erol其他文献
Magnetic properties of Co/Ni multilayer structures for use in STT-RAM
- DOI:
10.1088/1361-6463/aa97fa - 发表时间:
2017-12-20 - 期刊:
- 影响因子:3.4
- 作者:
Arora, M.;Lee-Hone, N. R.;Girt, Erol - 通讯作者:
Girt, Erol
Spin transport in tantalum studied using magnetic single and double layers
- DOI:
10.1103/physrevb.94.054416 - 发表时间:
2016-08-12 - 期刊:
- 影响因子:3.7
- 作者:
Montoya, Eric;Omelchenko, Pavlo;Girt, Erol - 通讯作者:
Girt, Erol
Spin Torque Switching in Nanopillars With Antiferromagnetic Reference Layer
- DOI:
10.1109/lmag.2016.2617319 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:1.2
- 作者:
Arora, Monika;Fowley, Ciaran;Girt, Erol - 通讯作者:
Girt, Erol
Quantum Well State Induced Oscillation of Pure Spin Currents in Fe/Au/Pd(001) Systems
- DOI:
10.1103/physrevlett.113.136601 - 发表时间:
2014-09-24 - 期刊:
- 影响因子:8.6
- 作者:
Montoya, Eric;Heinrich, Bret;Girt, Erol - 通讯作者:
Girt, Erol
Measurements of interlayer exchange coupling of Pt in Py|pt|Py system
- DOI:
10.1063/1.5050935 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:4
- 作者:
Omelchenko, Pavlo;Heinrich, Bret;Girt, Erol - 通讯作者:
Girt, Erol
Girt, Erol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Girt, Erol', 18)}}的其他基金
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
- 批准号:
RGPIN-2019-07203 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
- 批准号:
RGPIN-2019-07203 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel designs of Spin Torque Transfer Magnetic Random Access Memory (STT-MRAM) devices
自旋转矩传递磁性随机存取存储器(STT-MRAM)器件的新颖设计
- 批准号:
561528-2021 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Idea to Innovation
New sputter deposition capabilities for growth of metal-oxide multilayers
用于金属氧化物多层生长的新溅射沉积能力
- 批准号:
RTI-2022-00673 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Research Tools and Instruments
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
- 批准号:
RGPIN-2019-07203 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
- 批准号:
RGPIN-2019-07203 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in Novel Magnetic Materials
加拿大新型磁性材料研究主席
- 批准号:
1000210582-2008 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:
Canada Research Chairs
相似国自然基金
结构光场诱导力探测纳米结构近场光磁性的新机理与新技术研究
- 批准号:62375098
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
磁性核壳纳米粒子非对称组装结构中光致磁共振效应及其光热转换特性研究
- 批准号:52307015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
稀土纳米层状相的制备、结构表征及磁性研究
- 批准号:52371180
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
纳米磁性吸波材料微磁结构设计及磁损耗机理研究
- 批准号:52373271
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
铁基纳米晶合金非晶前驱体微结构调控及其晶化行为和软磁性能研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Materials Research Science and Engineering Center: Quantum and Spin Phenomena in Nanomagnetic Structures
材料研究科学与工程中心:纳米磁性结构中的量子和自旋现象
- 批准号:
0820521 - 财政年份:2008
- 资助金额:
$ 2.62万 - 项目类别:
Cooperative Agreement