Novel nanomagnetic structures, materials and devices

新型纳米磁性结构、材料和器件

基本信息

  • 批准号:
    RGPIN-2014-05675
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Important challenges and opportunities in information technology and alternative energy can be addressed using novel thin film materials and nanostructures. The context for this proposal falls into the following areas: spintronics; magnonics; magnetic recording (hard drives [HDs]); and photovoltaics. Spin-based devices present a number of opportunities and advantages compared to conventional charge-based electronics. As device density is increased, overall energy dissipation increases, which is a considerable obstacle in current electronic architecture. As well as Joule heating, the effects of electromigration and capacitive coupling are also major concerns. Spin-based devices overcome these problems by processing and transporting information using pure spin currents, without net charge flow. Information stored by magnetic means is also inherently non-volatile. Another way of transferring information is via spin waves. My research will explore a new direction – magnonic crystals. These are arrays of magnetic nanostructures, coupled by dipolar forces, in which band-structure engineering of the spin wave dispersion allows for the controlled propagation of spin waves. Inspired by photonic band-gap materials, this is a very promising new direction in spintronics. In the area of magnetic recording (the main way of storing information for more than 30 years), there is a search for new composite materials, structures, and magnetization reversal schemes, with the goal of creating thermally stable magnetization and manipulating it at ever-decreasing dimensions. To increase the recording density of HDs, the diameter of magnetic grains in recording media has to be reduced. This requires the use of ordered 3d-4d, 3d-5d, and 3d-4f compounds, which have much larger magnetic anisotropy values than the disordered hcp CoPt, used in current media. There are two main challenges that we are addressing in collaboration with the recording industry: 1) fabrication of ordered magnetic compounds that needs to be carried out above 400°C (current media are fabricated at ambient temperature); and 2) the design of a nonuniform magnetization reversal along the direction of the grain growth to facilitate the magnetization reversal in grains with such large magnetic anisotropy. We are part of the large research effort at SFU aiming to develop novel materials for photovoltaic applications. One goal is to develop low cost, high efficiency solar cells. II-VI compound semiconductors, in particular quaternary CZTS (copper tin zinc sulfide) compounds, have drawn considerable attention because they consist of abundant, low-cost materials. The quaternary compounds have increased flexibility in material properties, relative to binary and ternary semiconductors, but at the same, they have a large variety of intrinsic lattice defects, which significantly deteriorate their photovoltaic performance. We plan to grow single crystal CZTS films along different crystallographic orientations and investigate the effect of growth on the defect density, the presence of secondary phases, and the electrical properties of CZTS films. A long term objective is to explore ways to integrate III-V and II-VI semiconductors into multijunction solar cells using the extensive III-V facilities at SFU. Solar cell research is vital to making Canadian industry world leaders in the field. Developing this technology could significantly reduce Canada’s greenhouse emissions, slow global warming, and demonstrate Canadian leadership with regards to environmental protection.
信息技术和替代方案的重要挑战和替代方案可以使用材料和小型脉冲来解决以下领域。和基于电荷的优势电子耗散。通过磁性手段存储的信息也固有地是非挥发性的。旋转波的传播是受光子带隙材料的启发,在磁性记录器中的新方向。必须减少记录介质中的磁性晶粒。我们正在与录音行业合作解决的媒体:1)在400°C以上制造有序的磁化材料(当前媒体是在环境温度下制造的)大型磁各向异性。您的构造,第四纪的综合性在二元和三元半导体上具有灵活性,它们刺激了一大堆内在的晶格缺陷,我们计划沿着不同的晶体学方向发展单个CZTS膜使用SFU的大量III-V设施,次要相位的CZT膜和II-VI半导体的电气在环境保护方面,可能会大大减少加拿大温室的排放,缓慢的全球变暖,并在环境保护方面表现出加拿大的领导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Girt, Erol其他文献

Magnetic properties of Co/Ni multilayer structures for use in STT-RAM
  • DOI:
    10.1088/1361-6463/aa97fa
  • 发表时间:
    2017-12-20
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Arora, M.;Lee-Hone, N. R.;Girt, Erol
  • 通讯作者:
    Girt, Erol
Spin transport in tantalum studied using magnetic single and double layers
  • DOI:
    10.1103/physrevb.94.054416
  • 发表时间:
    2016-08-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Montoya, Eric;Omelchenko, Pavlo;Girt, Erol
  • 通讯作者:
    Girt, Erol
Spin Torque Switching in Nanopillars With Antiferromagnetic Reference Layer
  • DOI:
    10.1109/lmag.2016.2617319
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Arora, Monika;Fowley, Ciaran;Girt, Erol
  • 通讯作者:
    Girt, Erol
Quantum Well State Induced Oscillation of Pure Spin Currents in Fe/Au/Pd(001) Systems
  • DOI:
    10.1103/physrevlett.113.136601
  • 发表时间:
    2014-09-24
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Montoya, Eric;Heinrich, Bret;Girt, Erol
  • 通讯作者:
    Girt, Erol
Measurements of interlayer exchange coupling of Pt in Py|pt|Py system
  • DOI:
    10.1063/1.5050935
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Omelchenko, Pavlo;Heinrich, Bret;Girt, Erol
  • 通讯作者:
    Girt, Erol

Girt, Erol的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Girt, Erol', 18)}}的其他基金

Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
  • 批准号:
    RGPIN-2019-07203
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Novel designs of Spin Torque Transfer Magnetic Random Access Memory (STT-MRAM) devices
自旋转矩传递磁性随机存取存储器(STT-MRAM)器件的新颖设计
  • 批准号:
    561528-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Idea to Innovation
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
  • 批准号:
    RGPIN-2019-07203
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
New sputter deposition capabilities for growth of metal-oxide multilayers
用于金属氧化物多层生长的新溅射沉积能力
  • 批准号:
    RTI-2022-00673
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Tools and Instruments
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
  • 批准号:
    RGPIN-2019-07203
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
  • 批准号:
    RGPIN-2019-07203
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
  • 批准号:
    RGPIN-2014-05675
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
  • 批准号:
    RGPIN-2014-05675
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
  • 批准号:
    RGPIN-2014-05675
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
  • 批准号:
    RGPIN-2014-05675
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

结构光场诱导力探测纳米结构近场光磁性的新机理与新技术研究
  • 批准号:
    62375098
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
磁性核壳纳米粒子非对称组装结构中光致磁共振效应及其光热转换特性研究
  • 批准号:
    52307015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米磁性吸波材料微磁结构设计及磁损耗机理研究
  • 批准号:
    52373271
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
稀土纳米层状相的制备、结构表征及磁性研究
  • 批准号:
    52371180
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
铁基纳米晶合金非晶前驱体微结构调控及其晶化行为和软磁性能研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
  • 批准号:
    RGPIN-2014-05675
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
  • 批准号:
    RGPIN-2014-05675
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
  • 批准号:
    RGPIN-2014-05675
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
  • 批准号:
    RGPIN-2014-05675
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Materials Research Science and Engineering Center: Quantum and Spin Phenomena in Nanomagnetic Structures
材料研究科学与工程中心:纳米磁性结构中的量子和自旋现象
  • 批准号:
    0820521
  • 财政年份:
    2008
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了