Advanced Development of an Open-source Platform for Web-based Integrative Digital Image Analysis in Cancer
基于网络的癌症综合数字图像分析开源平台的高级开发
基本信息
- 批准号:9059053
- 负责人:
- 金额:$ 72.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptionAdvanced DevelopmentAgeAlgorithmsArchivesAreaCell CountCell NucleusCellsCellular MorphologyClinicalClinical DataClinical ResearchCloud ComputingCollectionCommunitiesComputer SimulationComputer softwareCustomDataData AnalysesData SetDatabasesDevelopmentDiagnosisEnsureExplosionGenderGene ExpressionGenerationsGeneric DrugsGeneticGenomicsGoalsHealthHistologyHumanImageImage AnalysisImageryImmunohistochemistryIndividualInformaticsInstitutionLabelLanguageLinkMalignant NeoplasmsMeasurementMedical GeneticsMetadataNecrosisOnline SystemsOutcomePathologyPatientsPerformanceProcessPythonsRecruitment ActivityResearchResearch InfrastructureResearch PersonnelResourcesRestSamplingScanningSeriesSlideSoftware EngineeringSoftware ToolsSolid NeoplasmSomatic CellSomatic MutationSystemTechnologyTestingThe Cancer Genome AtlasTissue ExtractsTissuesTumor BiologyVisualWorkangiogenesisanticancer researchbasecancer imagingcloud baseddashboarddata sharingdensitydesigndigitaldigital imagingexperiencegenetic informationgenomic datagigabyteimage archival systemimaging biomarkerimaging informaticsimprovedinterestmicroscopic imagingnew technologynovelopen sourcequantitative imagingrepositorysoftware systemssuccessterabytetooltreatment responsetumor
项目摘要
DESCRIPTION (provided by applicant): The increasing availability of high-quality digital scanners has enabled the generation of large collections of histology images, confocal/multichannel images, and accompanying metadata. However there is a dearth of robust open- source solutions to efficiently visualize, process and manage these ever growing imaging collections. Our goal is to open-source, document and further develop integrative technologies leveraging our experience with the Cancer Digital Slide Archive (CDSA), a tool we have developed to facilitate analysis of data provided by the NCI's the Cancer Genome Atlas (TCGA). This tool is NOT and will not be limited to the analysis of TCGA data, however by working backwards from public data already available we can ensure the informatics technologies developed are scaleable and usable by the cancer community. In our proposal, we will first go through a process of software engineering review to improve the ease of installation to facilitate distribution to other research groups. We have partnered with Kitware for this proposal allowing us to use their 15+ years of experience in building and maintain quality open source software. The rest of the proposal will focus on the testing and integration of new features such as the ability to perform image quantification (e.g. cell counting, cell profiling), image markup and labeling, as well as perform basic group level analysis allowing the correlation of imaging features with user defined variables of interest. As an example, a user may classify an individual slide based on the mean density of nuclei and correlate this imaging parameter with patient survival, or with tumor grade.
描述(由申请人提供):高质量数字扫描仪的可用性不断增加,使得能够生成大量组织学图像、共焦/多通道图像以及随附的元数据。然而,缺乏强大的开源解决方案来有效地可视化、处理和管理这些不断增长的图像集合。我们的目标是利用我们在癌症数字幻灯片存档 (CDSA) 方面的经验,开源、记录并进一步开发综合技术,CDSA 是我们开发的一种工具,旨在促进 NCI 癌症基因组图谱 (TCGA) 提供的数据分析。该工具不是也不会仅限于 TCGA 数据的分析,但是通过从现有的公共数据进行逆推,我们可以确保所开发的信息学技术可扩展并可供癌症界使用。在我们的提案中,我们将首先进行软件工程审查过程,以提高安装的便利性,以便于分发给其他研究小组。我们与 Kitware 合作完成了这项提案,使我们能够利用他们在构建和维护高质量开源软件方面超过 15 年的经验。该提案的其余部分将重点关注新功能的测试和集成,例如执行图像量化(例如细胞计数、细胞分析)、图像标记和标记的能力,以及执行基本组级分析以实现成像关联的能力具有用户定义的感兴趣变量的特征。例如,用户可以根据细胞核的平均密度对单个载玻片进行分类,并将该成像参数与患者存活率或肿瘤等级相关联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Cooper其他文献
Lee Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Cooper', 18)}}的其他基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 72.15万 - 项目类别:
Improved whole-brain spectroscopic MRI for radiation therapy planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
10443355 - 财政年份:2022
- 资助金额:
$ 72.15万 - 项目类别:
Improved whole-brain spectroscopic MRI for radiation therapy planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
10618320 - 财政年份:2022
- 资助金额:
$ 72.15万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10298684 - 财政年份:2021
- 资助金额:
$ 72.15万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10298684 - 财政年份:2021
- 资助金额:
$ 72.15万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10646429 - 财政年份:2021
- 资助金额:
$ 72.15万 - 项目类别:
Cloud strategies for improving cost, scalability, and accessibility of a machine learning system for pathology images
用于提高病理图像机器学习系统的成本、可扩展性和可访问性的云策略
- 批准号:
10824959 - 财政年份:2021
- 资助金额:
$ 72.15万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10609284 - 财政年份:2021
- 资助金额:
$ 72.15万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10466914 - 财政年份:2021
- 资助金额:
$ 72.15万 - 项目类别:
Improved Whole-Brain Spectroscopic MRI for Radiation Treatment Planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
9791190 - 财政年份:2018
- 资助金额:
$ 72.15万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Multi-level interventions for addressing tobacco cessation and SDOH in Community Health Centers (CHCs)
解决社区卫生中心 (CHC) 戒烟和 SDOH 问题的多层次干预措施
- 批准号:
10661440 - 财政年份:2023
- 资助金额:
$ 72.15万 - 项目类别:
Person-centered quality measurement and management in a system for addictions treatment in New York State
纽约州成瘾治疗系统中以人为本的质量测量和管理
- 批准号:
10772463 - 财政年份:2023
- 资助金额:
$ 72.15万 - 项目类别:
Effects of Medicaid IMD SUD waiver on access to addiction treatment
医疗补助 IMD SUD 豁免对获得成瘾治疗的影响
- 批准号:
10726979 - 财政年份:2023
- 资助金额:
$ 72.15万 - 项目类别:
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 72.15万 - 项目类别:
Strategies to improve Utilization of Post-overdose Evidence-based Risk mitigation among Non-fatal Overdoses in VA (SUPER NOVA)
提高药物过量后利用率的策略 基于证据的 VA 非致命药物过量风险缓解策略 (SUPER NOVA)
- 批准号:
10425936 - 财政年份:2023
- 资助金额:
$ 72.15万 - 项目类别: