Improved whole-brain spectroscopic MRI for radiation therapy planning
改进的全脑光谱 MRI 用于放射治疗计划
基本信息
- 批准号:10443355
- 负责人:
- 金额:$ 66.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-05 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAdoptionAdultAmerican College of RadiologyAmerican College of Radiology Imaging NetworkAreaAwardBackBrainBrain NeoplasmsChemotherapy and/or radiationCholineClinicalClinical TreatmentClinical TrialsClinical Trials Cooperative GroupCollaborationsComputer softwareDataData DisplayDetectionDevelopmentDiagnosisDiagnosticDisease ProgressionDoseEastern Cooperative Oncology GroupEngineeringEnvironmentExcisionFundingGenomicsGlioblastomaGoalsGrantHeadHistologicHourImageImaging technologyInfiltrationLeadLeftLifeLipidsMagnetic Resonance ImagingMapsMeasuresMetabolicMetabolismMethodsMorphologic artifactsMotionMultimodal ImagingN-acetylaspartateNational Clinical Trials NetworkNatureNetwork-basedNewly DiagnosedOnline SystemsOperative Surgical ProceduresOutcomePatient-Focused OutcomesPatientsPerformancePhasePhysiciansPilot ProjectsPredispositionPrimary Brain NeoplasmsRadiation Dose UnitRadiation therapyRadiology SpecialtyRandomizedReadingRecurrenceReportingResearchResolutionScanningSensitivity and SpecificitySiteSoftware ToolsSurvival AnalysisSystemSystems IntegrationTechniquesTechnologyTimeTissuesTreatment outcomeUpdateVendorVisualizationWorkbasebrain tissueclinical decision-makingclinical imagingclinical implementationcloud basedcontrast enhanceddata analysis pipelinedata managementdata visualizationfollow-uphigh riskimage reconstructionimaging modalityimaging platformimprovedimproved outcomemagnetic resonance spectroscopic imagingmetabolic imagingmultidimensional dataneoplastic cellneovasculatureneural networknovelpredictive modelingprototypereconstructionsafety and feasibilitysoftware developmentsoftware systemsspectroscopic dataspectroscopic imagingstandard of caretooltreatment planningtreatment responsetumortumor progressiontwo-dimensionaluser-friendly
项目摘要
Identifying the extent of brain tumor margins for radiation treatment planning remains a challenging task due to
the infiltrative nature of these tumors and limitations in current standard imaging methods. Multiple studies
including our own have demonstrated that an MR technique for detecting metabolites in tissue, MR spectroscopic
imaging or spectroscopic MRI (sMRI), can detect areas of infiltrating tumor with a high degree of sensitivity and
specificity, enabling better radiation treatment of areas that lead to early recurrence and extending life. sMRI
enables the identification of tumor extent that is marked by increased Choline/N-Acetylaspartate ratios, including
regions that are not detectable by diagnostic MRI and that are normally left untreated. By allowing these
previously undetected regions to be treated, sMRI has the potential to improve the efficacy of radiation treatment
and significantly delay recurrence. In our 3-site sMRI-guided radiation dose escalation pilot study which was
completed in 2019, we were able to demonstrate feasibility and safety. Survival analysis of all 30 GBM patients
shows a promising median overall survival (OS) of 23 months compared to 16 months OS for GBM patients
receiving standard-of-care. Our trial has been approved as a National Clinical Trial Network (ECOG-ACRIN)
trial (EAF211). This is a great opportunity to disseminate this technique with staff support from ACRIN and
American College of Radiology (ACR). We will achieve the goal in the renewal funding period of our current
project by leveraging diverse expertise at three research sites and collaboration with Siemens Healthineers to
engineer and validate technological improvements needed to improve sMRI acquisition, analysis, and clinical
integration. These improvements include: (1) updated rapid and motion-robust sMRI for improved image quality;
(2) new accelerated data processing pipelines to return Cho/NAA ratio maps to PACS for clinically timely
radiology reporting; (3) new processing, display, and analysis methods that will present metabolite maps in an
efficient manner with a clinician-friendly interface that enables integration with radiation treatment planning
software systems; and (4) development of new tools to predict the optimal baseline RT planning strategies using
sMRI. The completion of this study will provide robust sMRI acquisition methods and software tools that are
ready to be deployed in clinical use and which will help guide important treatment decisions.
确定放射治疗计划的脑肿瘤边缘范围仍然是一项具有挑战性的任务,因为
这些肿瘤的浸润性质以及当前标准成像方法的局限性。多项研究
包括我们自己已经证明了一种用于检测组织中代谢物的 MR 技术,MR 光谱
成像或光谱 MRI (sMRI),可以高度灵敏地检测浸润性肿瘤区域,
特异性,能够对导致早期复发和延长生命的区域进行更好的放射治疗。磁共振成像
能够识别以胆碱/N-乙酰天冬氨酸比率增加为标志的肿瘤范围,包括
诊断性 MRI 无法检测到且通常未经治疗的区域。通过允许这些
以前未检测到的待治疗区域,sMRI 有潜力提高放射治疗的疗效
并显着延缓复发。在我们的 3 点 sMRI 引导辐射剂量递增试点研究中,
于 2019 年完成,我们能够证明可行性和安全性。所有 30 名 GBM 患者的生存分析
显示 GBM 患者的中位总生存期 (OS) 有望达到 23 个月,而 OS 为 16 个月
接受标准护理。我们的试验已被批准为国家临床试验网络(ECOG-ACRIN)
试验(EAF211)。这是在 ACRIN 和 ACRIN 员工支持下传播该技术的绝佳机会
美国放射学院 (ACR)。我们将在当前的续期资助期内实现这一目标
该项目利用三个研究中心的不同专业知识并与西门子医疗公司合作
设计并验证改进 sMRI 采集、分析和临床所需的技术改进
一体化。这些改进包括:(1) 更新了快速且运动鲁棒的 sMRI,以提高图像质量;
(2) 新的加速数据处理管道,将 Cho/NAA 比率图返回至 PACS,以便临床及时使用
放射学报告; (3) 新的处理、显示和分析方法,以直观的方式呈现代谢图谱
具有临床医生友好界面的高效方式,可与放射治疗计划集成
软件系统; (4) 开发新工具来预测最佳基线 RT 规划策略
磁共振成像。这项研究的完成将提供强大的 sMRI 采集方法和软件工具
准备在临床使用中部署,这将有助于指导重要的治疗决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Cooper其他文献
Lee Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Cooper', 18)}}的其他基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 66.12万 - 项目类别:
Improved whole-brain spectroscopic MRI for radiation therapy planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
10618320 - 财政年份:2022
- 资助金额:
$ 66.12万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10298684 - 财政年份:2021
- 资助金额:
$ 66.12万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10298684 - 财政年份:2021
- 资助金额:
$ 66.12万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10646429 - 财政年份:2021
- 资助金额:
$ 66.12万 - 项目类别:
Cloud strategies for improving cost, scalability, and accessibility of a machine learning system for pathology images
用于提高病理图像机器学习系统的成本、可扩展性和可访问性的云策略
- 批准号:
10824959 - 财政年份:2021
- 资助金额:
$ 66.12万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10609284 - 财政年份:2021
- 资助金额:
$ 66.12万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10466914 - 财政年份:2021
- 资助金额:
$ 66.12万 - 项目类别:
Improved Whole-Brain Spectroscopic MRI for Radiation Treatment Planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
9791190 - 财政年份:2018
- 资助金额:
$ 66.12万 - 项目类别:
Improved Whole-Brain Spectroscopic MRI for Radiation Treatment Planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
9981743 - 财政年份:2018
- 资助金额:
$ 66.12万 - 项目类别:
相似国自然基金
面向电力储能集群系统的加速退化试验与寿命评估方法研究
- 批准号:62303293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向计算密集型应用的新型计算范式及其加速器关键技术
- 批准号:62374108
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
极端光场条件下正电子束的产生、加速和操控研究
- 批准号:12375244
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 66.12万 - 项目类别:
Blood Biomarker Development and Validation in Chronic Traumatic Encephalopathy and Alzheimer's Disease and Alzheimer's Disease Related Dementias
慢性创伤性脑病、阿尔茨海默病和阿尔茨海默病相关痴呆的血液生物标记物开发和验证
- 批准号:
10662752 - 财政年份:2023
- 资助金额:
$ 66.12万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 66.12万 - 项目类别:
Development of Magnetic Resonance Fingerprinting (MRF) to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer
开发磁共振指纹图谱 (MRF) 来评估乳腺癌新辅助化疗的反应
- 批准号:
10713097 - 财政年份:2023
- 资助金额:
$ 66.12万 - 项目类别:
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 66.12万 - 项目类别: