SUBSTRATE RIGIDITY AND GENE EXPRESSION: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
基本信息
- 批准号:9238291
- 负责人:
- 金额:$ 46.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdhesionsAreaBiocompatible MaterialsBiological AssayBiologyBiomechanicsBiomedical EngineeringCell Culture TechniquesCell NucleusCell physiologyCellsCellular biologyCharacteristicsChemicalsChromatin StructureCollaborationsComplexCuesCytoskeletonDevelopmentElectron MicroscopeEngineeringFibroblastsFloridaGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomeGoalsHydrogelsIntermediate FilamentsLaboratoriesLamin Type BMassachusettsMechanicsMediatingMessenger RNAMicroRNAsMicrotubulesModelingMolecularMolecular BiologyMotorMyosin ATPaseNuclearNuclear ExportNuclear StructureOpticsPerformancePropertyProteinsRegulationResearchResearch PersonnelResourcesRoleSchoolsSolidTechniquesTechnologyTestingTimeTissue EngineeringTissuesTranscriptUniversitiesWorkbasebiomaterial developmentgenome-widehistone modificationimprovedinterestmedical schoolsnovelprofessorresearch studyscaffoldtissue repairtissue support frame
项目摘要
PROJECT SUMMARY/ABSTRACT
The use of solid scaffolds that provide cells with mechanical and chemical cues is a promising approach for
guiding tissue repair and promoting tissue-scaffold integration. It is becoming increasingly clear that tuning
scaffold rigidity is a powerful way to control cell function, but how scaffold rigidity regulates gene expression is
not well-understood. Previously, we tested the hypothesis that substrate rigidity controls gene expression by
tuning nuclear tension. We took advantage of the fact that the LINC (linker of nucleoskeleton-to-cytoskeleton)
complex is a known molecular linker of the nucleus to the cytoskeleton, and asked how it regulates the sensitivity
of genome-wide transcription to substrate rigidity. Our results were the first to show that the LINC complex
facilitates mechano-regulation of expression across the genome. Combined with myosin inhibition studies, we
were able to identify genes that depend on nuclear tension for their mechanosensitivity. In this continuation, we
propose to identify molecular mechanisms for these highly novel findings. Two specific aims are proposed: Aim
1: To identify the nuclear molecular linkers necessary for rigidity-mediated control of gene expression. Aim 2: To
determine the mechanisms by which nuclear-cytoskeletal linkage regulates gene mechanosensitivity.
Scientifically, this work addresses important and longstanding questions about the mechanisms by which the
cell microenvironment controls gene expression. Clinically, the long-term impact of this work is to promote the
rational development of new biomaterials with mechanical properties tuned for tissue engineering and repair.
An additional benefit is the development of an integrated approach using both technologies from engineering
and techniques from molecular cell biology for addressing a fundamental question in rigidity sensing. This work
is of fundamental interest to diverse fields including cell-biomaterial interactions, nuclear and cell mechanics and
molecular and cell biology of gene regulation. The project builds collaboration between the groups of Lele
(University of Florida), Nickerson (University of Massachusetts Medical School) and Roux (Sanford Research).
Each laboratory brings unique resources to this research including access and expertise in using sophisticated
optical and electron microscopes, strong expertise with wet-bench cell and molecular biology experiments
specifically related to the nucleus, and expertise in cell and nuclear mechanosensing and biomaterial
development and characterization. The team will also benefit from the support of well-known molecular and cell
biologists and bioengineers who have pioneered experimental techniques in a broad number of areas in LINC
complex biology, nuclear/chromatin structure and function and tissue biomechanics.
项目概要/摘要
使用为细胞提供机械和化学线索的固体支架是一种有前途的方法
指导组织修复并促进组织-支架整合。越来越明显的是,调整
支架刚性是控制细胞功能的有效方法,但支架刚性如何调节基因表达尚不清楚
不太明白。之前,我们测试了底物刚性通过以下方式控制基因表达的假设:
调整核张力。我们利用了 LINC(核骨架到细胞骨架的连接器)这一事实
复合物是细胞核与细胞骨架的已知分子连接物,并询问它如何调节敏感性
全基因组转录对底物刚性的影响。我们的结果首次表明 LINC 复合物
促进整个基因组表达的机械调节。结合肌球蛋白抑制研究,我们
我们能够识别出依赖核张力来实现机械敏感性的基因。在这个延续中,我们
提议确定这些高度新颖的发现的分子机制。提出了两个具体目标: 目标
图 1:鉴定刚性介导的基因表达控制所需的核分子接头。目标 2:
确定核-细胞骨架连接调节基因机械敏感性的机制。
从科学角度来说,这项工作解决了有关机制的重要且长期存在的问题。
细胞微环境控制基因表达。在临床上,这项工作的长期影响是促进
合理开发具有适合组织工程和修复的机械性能的新型生物材料。
另一个好处是使用工程技术中的两种技术开发了一种集成方法
以及分子细胞生物学技术,用于解决刚性传感的基本问题。这部作品
对细胞-生物材料相互作用、核和细胞力学等不同领域具有根本意义
基因调控的分子和细胞生物学。该项目建立了乐乐集团之间的合作
(佛罗里达大学)、尼克森(马萨诸塞大学医学院)和鲁克斯(桑福德研究中心)。
每个实验室都为这项研究带来了独特的资源,包括使用复杂技术的途径和专业知识
光学和电子显微镜,湿台细胞和分子生物学实验的丰富专业知识
特别与细胞核相关,以及细胞和核机械传感和生物材料方面的专业知识
发展和表征。团队还将受益于知名分子和细胞领域的支持
在 LINC 的众多领域开创实验技术的生物学家和生物工程师
复杂生物学、核/染色质结构和功能以及组织生物力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanmay P. Lele其他文献
Cellular micromasonry: biofabrication with single cell precision
- DOI:
10.1039/d2sm01013e - 发表时间:
2022-11 - 期刊:
- 影响因子:3.4
- 作者:
S. Tori Ellison;Senthilkumar Duraivel;Vignesh Subramaniam;Fredrik Hugosson;Bo Yu;Joseph J. Lebowitz;Habibeh Khoshbouei;Tanmay P. Lele;Mark Q. Martindale;Thomas E. Angelini - 通讯作者:
Thomas E. Angelini
Nuclear size changes caused by local motion of cell boundaries unfold the nuclear lamina and dilate chromatin and intranuclear bodies
- DOI:
10.1039/c9sm01666j - 发表时间:
2019-10 - 期刊:
- 影响因子:3.4
- 作者:
Aditya Katiyar;V. J. Tocco;Yuan Li;Varun Aggarwal;Andrew C. Tamashunas;Richard B. Dickinson;Tanmay P. Lele - 通讯作者:
Tanmay P. Lele
Introduction to soft matter aspects of cancer
- DOI:
10.1039/d3sm90007j - 发表时间:
2023-01 - 期刊:
- 影响因子:3.4
- 作者:
Anna V. Taubenberger;Tanmay P. Lele - 通讯作者:
Tanmay P. Lele
Tanmay P. Lele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanmay P. Lele', 18)}}的其他基金
Nuclear Dysfunction in Cancer: The Role of Mechanical Stresses Transmittedby the LINC Complex
癌症中的核功能障碍:LINC 复合体传递的机械应力的作用
- 批准号:
10303507 - 财政年份:2020
- 资助金额:
$ 46.49万 - 项目类别:
Nuclear Dysfunction in Cancer: The Role of Mechanical Stresses Transmittedby the LINC Complex
癌症中的核功能障碍:LINC 复合体传递的机械应力的作用
- 批准号:
10571797 - 财政年份:2020
- 资助金额:
$ 46.49万 - 项目类别:
Substrate Rigidity and Gene Expression: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
8517716 - 财政年份:2012
- 资助金额:
$ 46.49万 - 项目类别:
Substrate Rigidity and Gene Expression: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
8369592 - 财政年份:2012
- 资助金额:
$ 46.49万 - 项目类别:
Substrate Rigidity and Gene Expression: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
8705518 - 财政年份:2012
- 资助金额:
$ 46.49万 - 项目类别:
SUBSTRATE RIGIDITY AND GENE EXPRESSION: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
9357573 - 财政年份:2012
- 资助金额:
$ 46.49万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Deep phenotyping of fusion oncoprotein-driven pediatric cancer metastasis with single-cell proteomics
利用单细胞蛋白质组学对融合癌蛋白驱动的儿科癌症转移进行深度表型分析
- 批准号:
10687394 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别: