Substrate Rigidity and Gene Expression: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
基本信息
- 批准号:8705518
- 负责人:
- 金额:$ 40.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAddressAdhesionsAreaBiocompatible MaterialsBiological AssayBiomedical EngineeringBlood VesselsCell Culture TechniquesCell NucleusCell physiologyCellsCellular biologyCharacteristicsChemicalsChromatinChromatin StructureClinicalCollaborationsColorComplexCore FacilityCuesCytoskeletonDependenceDevelopmentDisciplineElectron MicroscopeElectron MicroscopyEndothelial CellsEngineeringEpigenetic ProcessFibroblastsFloridaFlow CytometryFluorescence MicroscopyFluorescent in Situ HybridizationGene ChipsGene ExpressionGene Expression RegulationGenesImageLaboratoriesLocationMassachusettsMechanicsMediatingMessenger RNAModificationMolecularMolecular BiologyMolecular ConformationNuclearNuclear EnvelopeNuclear MatrixNuclear StructureOpticsPerformancePositioning AttributeProcessPropertyProteinsRNA InterferenceRNA Polymerase IIResearchResearch PersonnelResourcesRoleSWP29ShapesSolidSorting - Cell MovementSurfaceTechniquesTechnologyTertiary Protein StructureTestingTissue EngineeringTranscriptTwo-Dimensional Gel ElectrophoresisUnited States National Institutes of HealthUniversitiesWorkbioimagingbiomaterial developmentcellular imagingchromatin immunoprecipitationdensitygenome-widehistone modificationimprovedinnovationinterestmolecular imagingneovascularizationnucleaseprofessorprogramsprotein complexprotein expressionresearch studyscaffoldtissue repairtissue support frame
项目摘要
DESCRIPTION (provided by applicant): The use of solid scaffolds that provide the correct mechanical and chemical cues to cells is a promising approach for guiding tissue repair, promoting tissue-scaffold integration and achieving adequate neovascularization. It is becoming increasingly clear that tuning scaffold rigidity is a powerful way to control cell function but how
scaffold rigidity regulates gene expression is not well-understood. The focus of this proposal is on the molecular mechanisms by which gene expression is controlled by the mechanical properties of the substrate. We propose to test the hypothesis that substrate rigidity controls gene expression by tuning nuclear tension. Strong support for this hypothesis comes from our preliminary results: we have found that substrate rigidity significantly alters nuclear shape through the modulation of cytoskeletal forces. We have also established that cytoskeletal force transfer to the nuclear surface is mediated by nuclear membrane embedded LINC (for linker of nucleoskeleton to cytoskeleton) complex proteins. Our approach is to 1) determine which genes are turned on or off in a substrate rigidity dependent manner, 2) examine the extent to which LINC complex proteins are required for rigidity control of genes, and 3) characterize the mechanisms by which rigidity modulation of nuclear shape controls intra-nuclear chromatin structure, spatial location of genes and epigenetic modifications that collectively regulate gene expression. Two specific aims are proposed: Aim 1: To test the hypothesis that substrate rigidity controls gene expression in a LINC complex dependent manner. Aim 2: To characterize the mechanisms by which nuclear tension regulates the expression of genes. The successful completion of these aims will have broad-ranging impact, in fields as diverse as cell-biomaterial interactions, nuclear and cell mechanics and molecular and cell biology of gene regulation. Collectively, this work is of strong interest to both engineering and scientific disciplines. The project integrates the expertise of three collaborators (Lele, Nickerson and Roux) from very different backgrounds (bioengineering, molecular biology, cell biology). The interaction between investigators of such varied background is expected to result in new and highly significant discoveries in the proposed problem area. Each investigator will contribute innovative, cutting-edge techniques in the fields of molecular biology, cell and molecular imaging, biomaterials and cell and nuclear mechanics. The completion of these aims will enhance our understanding of how scaffold properties direct vascular cells. As a result, we expect that they will promote the development of improved scaffolds for many tissue engineering applications.
描述(由申请人提供):使用为细胞提供正确的机械和化学信号的固体支架是指导组织修复、促进组织-支架整合和实现足够的新血管形成的有前途的方法。越来越清楚的是,调整支架刚性是控制细胞功能的有效方法,但如何
支架刚性调节基因表达尚不清楚。该提案的重点是底物机械特性控制基因表达的分子机制。我们建议检验底物刚性通过调节核张力来控制基因表达的假设。我们的初步结果有力地支持了这一假设:我们发现基质刚性通过调节细胞骨架力显着改变核形状。我们还确定,细胞骨架力传递到核表面是由核膜嵌入的 LINC(核骨架与细胞骨架的连接体)复合蛋白介导的。我们的方法是 1) 确定哪些基因以底物刚性依赖性方式打开或关闭,2) 检查基因刚性控制所需的 LINC 复合蛋白的程度,以及 3) 表征刚性调节的机制核形状控制核内染色质结构、基因的空间位置和共同调节基因表达的表观遗传修饰。提出了两个具体目标: 目标 1:检验底物刚性以 LINC 复合物依赖性方式控制基因表达的假设。目标 2:表征核张力调节基因表达的机制。这些目标的成功完成将在细胞-生物材料相互作用、核和细胞力学以及基因调控的分子和细胞生物学等多个领域产生广泛的影响。总的来说,这项工作引起了工程和科学学科的浓厚兴趣。该项目整合了来自不同背景(生物工程、分子生物学、细胞生物学)的三位合作者(Lele、Nickerson 和 Roux)的专业知识。具有不同背景的研究人员之间的互动预计将在所提出的问题领域产生新的、非常重要的发现。每位研究人员都将在分子生物学、细胞和分子成像、生物材料以及细胞和核力学领域贡献创新的尖端技术。这些目标的完成将增强我们对支架特性如何引导血管细胞的理解。因此,我们预计它们将促进许多组织工程应用的改进支架的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanmay P. Lele其他文献
Cellular micromasonry: biofabrication with single cell precision
- DOI:
10.1039/d2sm01013e - 发表时间:
2022-11 - 期刊:
- 影响因子:3.4
- 作者:
S. Tori Ellison;Senthilkumar Duraivel;Vignesh Subramaniam;Fredrik Hugosson;Bo Yu;Joseph J. Lebowitz;Habibeh Khoshbouei;Tanmay P. Lele;Mark Q. Martindale;Thomas E. Angelini - 通讯作者:
Thomas E. Angelini
Nuclear size changes caused by local motion of cell boundaries unfold the nuclear lamina and dilate chromatin and intranuclear bodies
- DOI:
10.1039/c9sm01666j - 发表时间:
2019-10 - 期刊:
- 影响因子:3.4
- 作者:
Aditya Katiyar;V. J. Tocco;Yuan Li;Varun Aggarwal;Andrew C. Tamashunas;Richard B. Dickinson;Tanmay P. Lele - 通讯作者:
Tanmay P. Lele
Introduction to soft matter aspects of cancer
- DOI:
10.1039/d3sm90007j - 发表时间:
2023-01 - 期刊:
- 影响因子:3.4
- 作者:
Anna V. Taubenberger;Tanmay P. Lele - 通讯作者:
Tanmay P. Lele
Tanmay P. Lele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanmay P. Lele', 18)}}的其他基金
Nuclear Dysfunction in Cancer: The Role of Mechanical Stresses Transmittedby the LINC Complex
癌症中的核功能障碍:LINC 复合体传递的机械应力的作用
- 批准号:
10303507 - 财政年份:2020
- 资助金额:
$ 40.99万 - 项目类别:
Nuclear Dysfunction in Cancer: The Role of Mechanical Stresses Transmittedby the LINC Complex
癌症中的核功能障碍:LINC 复合体传递的机械应力的作用
- 批准号:
10571797 - 财政年份:2020
- 资助金额:
$ 40.99万 - 项目类别:
Substrate Rigidity and Gene Expression: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
8517716 - 财政年份:2012
- 资助金额:
$ 40.99万 - 项目类别:
Substrate Rigidity and Gene Expression: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
8369592 - 财政年份:2012
- 资助金额:
$ 40.99万 - 项目类别:
SUBSTRATE RIGIDITY AND GENE EXPRESSION: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
9357573 - 财政年份:2012
- 资助金额:
$ 40.99万 - 项目类别:
SUBSTRATE RIGIDITY AND GENE EXPRESSION: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
9238291 - 财政年份:2012
- 资助金额:
$ 40.99万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 40.99万 - 项目类别:
Control of epithelial morphology and bioenergetics by Toll receptors during dynamic tissue remodeling
动态组织重塑过程中 Toll 受体对上皮形态和生物能的控制
- 批准号:
10737093 - 财政年份:2023
- 资助金额:
$ 40.99万 - 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 40.99万 - 项目类别:
Physical, cellular, and molecular control of tissue fission and fusion
组织裂变和融合的物理、细胞和分子控制
- 批准号:
10724005 - 财政年份:2023
- 资助金额:
$ 40.99万 - 项目类别:
miRNA-regulation at focal adhesions establishes vascular mechanohomeostasis
粘着斑处的 miRNA 调节建立血管机械稳态
- 批准号:
10656557 - 财政年份:2022
- 资助金额:
$ 40.99万 - 项目类别: