Endogenous Gas Molecules As Transcription Factors

内源性气体分子作为转录因子

基本信息

  • 批准号:
    7903074
  • 负责人:
  • 金额:
    $ 34.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The importance of gas molecules in mammalian survival is exemplified by the requisite need for oxygen to sustain life. In 2000 the Noble Prize in Medicine was awarded for the discovery and characterization of nitric oxide (NO) as endothelial derived relaxation factor. This discovery revolutionized how we view gas molecules and spurned the activity of numerous laboratories to study the molecular mechanisms by which NO regulated and modulated cellular function, particularly in the cardiovascular arena. More recently in 1998, a second functional gas molecule was revealed; carbon monoxide, touted as a toxin to avoid, was shown to be a biologically active gas molecule with potent cytoprotective properties in vitro and in vivo at low concentrations. This discovery stemmed from work on the enzyme heme oxygenase-1, which is an inducible stress response gene that generates CO endogenously as it catabolizes heme in all cells. CO and NO have been well studied and continue to be evaluated from a mechanistic standpoint in numerous model systems. A great deal of information has been gleaned regarding the action of these gases related to signaling cascades and downstream gene regulation. CO unlike NO is non-reactive and acts on divalent cations such as iron contained in heme moieties of numerous enzymes to modulate their function. Whether CO binds to other metal cations is likely but has not yet been studied. Until the elucidation of these gases as biological mediators, gases have carried the dogma of simply being necessary to either fulfill metabolic requirements of the cell or as simple waste products of enzymatic processes. We believe there is a greater role for gases in overall cellular function and behavior and offer the innovative hypothesis that CO, which we will use as the prototype gas for our studies, functions as a gaseous transcriptional regulator operating as a homeostatic sensor within all cells at the level of DNA dynamics. We believe this fits the purpose of the EUREKA mechanism because it is a novel innovative and unconventional hypothesis which if proven to be valid will reshape current theory of DNA regulation, but also many aspects of cellular function and behavior including gene expression, but perhaps more importantly DNA damage and repair, as well as DNA synthesis and proliferation. Our central hypothesis is that gaseous CO interacts directly with DNA via metal ions in complex with polymerases and topoisomersases present on DNA. In the time allotted for this work we will evaluate the interaction of CO with DNA and how this influences transcription, recognition of damage and proliferation in the cell. We will test our hypothesis with the following aims: Specific Aim 1: To test the ability of CO to modulate DNA dynamics. Specific Aim 2: To evaluate the consequences of CO binding to DNA and/or polymerase to regulate transcription by fostering the unwinding of DNA and facilitating polymerase activity. Specific Aim 3: To evaluate the role of CO in DNA synthesis and the regulation of cellular proliferation. PUBLIC HEALTH RELEVANCE: Understanding how a cell controls its own destiny and responds to its environment is critical to scientific discoveries of how to interfere and correct an inappropriate response or change in the cell function that underlie the origins of disease pathology. We are proposing that the gas carbon monoxide (CO), which is generated endogenously by all cells, is a molecule that directly influences cellular behavior by influencing how DNA is regulated for gene expression. Low, non-toxic concentrations of CO impart potent protection and repair in animal models of disease. This proposal will focus on carbon monoxide and the innovative hypothesis that a gas molecule can dictate a cellular response at the level of the DNA.
描述(由申请人提供):气体分子在哺乳动物生存中的重要性可以通过维持生命所必需的氧气来例证。 2000 年诺贝尔医学奖因一氧化氮 (NO) 作为内皮衍生松弛因子的发现和表征而被授予。这一发现彻底改变了我们看待气体分子的方式,并摒弃了众多实验室研究一氧化氮调节和调节细胞功能的分子机制的活动,特别是在心血管领域。最近在 1998 年,第二种功能性气体分子被发现;一氧化碳被认为是一种需要避免的毒素,它被证明是一种具有生物活性的气体分子,在体外和体内低浓度下具有有效的细胞保护特性。这一发现源于对血红素加氧酶-1 的研究,该酶是一种诱导应激反应基因,在所有细胞中分解代谢血红素时会内源性产生 CO。 CO 和 NO 已得到充分研究,并在许多模型系统中继续从机械角度进行评估。关于这些气体与信号级联和下游基因调控相关的作用,已经收集了大量信息。与 NO 不同,CO 不具有反应性,并且作用于二价阳离子,例如多种酶的血红素部分中所含的铁,以调节其功能。 CO 是否可能与其他金属阳离子结合,但尚未得到研究。在阐明这些气体作为生物介质之前,气体一直被认为是满足细胞代谢需求所必需的,或者是酶促过程的简单废物。我们相信气体在整体细胞功能和行为中发挥着更大的作用,并提出了创新假设:CO(我们将使用它作为我们研究的原型气体)作为气体转录调节剂,在所有细胞内充当稳态传感器。 DNA动力学水平。我们相信这符合 EUREKA 机制的目的,因为它是一种新颖且非传统的假设,如果被证明是有效的,将重塑当前的 DNA 调控理论,而且还将重塑包括基因表达在内的细胞功能和行为的许多方面,但也许更重要的是DNA损伤和修复,以及DNA合成和增殖。我们的中心假设是,气态 CO 通过与 DNA 上存在的聚合酶和拓扑异构酶复合的金属离子直接与 DNA 相互作用。在分配给这项工作的时间内,我们将评估 CO 与 DNA 的相互作用,以及它如何影响细胞中的转录、损伤识别和增殖。我们将通过以下目标来检验我们的假设: 具体目标 1:测试 CO 调节 DNA 动力学的能力。具体目标 2:评估 CO 与 DNA 和/或聚合酶结合,通过促进 DNA 解旋和促进聚合酶活性来调节转录的后果。具体目标 3:评估 CO 在 DNA 合成和细胞增殖调节中的作用。公共健康相关性:了解细胞如何控制自己的命运并对其环境做出反应,对于科学发现如何干扰和纠正疾病病理学起源的细胞功能的不当反应或变化至关重要。我们提出,所有细胞内源产生的气体一氧化碳 (CO) 是一种通过影响 DNA 基因表达调节方式直接影响细胞行为的分子。低浓度、无毒的 CO 可为疾病动物模型提供有效的保护和修复。该提案将重点关注一氧化碳和气体分子可以在 DNA 水平上决定细胞反应的创新假设。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LEO E OTTERBEIN其他文献

LEO E OTTERBEIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LEO E OTTERBEIN', 18)}}的其他基金

Early-Stage Preclinical Validation of Carbon Monoxide Prodrugs for Acute Kidney Injury
一氧化碳前药治疗急性肾损伤的早期临床前验证
  • 批准号:
    10665011
  • 财政年份:
    2022
  • 资助金额:
    $ 34.42万
  • 项目类别:
Early-Stage Preclinical Validation of Carbon Monoxide Prodrugs for Acute Kidney Injury
一氧化碳前药治疗急性肾损伤的早期临床前验证
  • 批准号:
    10665011
  • 财政年份:
    2022
  • 资助金额:
    $ 34.42万
  • 项目类别:
Early-Stage Preclinical Validation of Carbon Monoxide Prodrugs for Acute Kidney Injury
一氧化碳前药治疗急性肾损伤的早期临床前验证
  • 批准号:
    10525896
  • 财政年份:
    2022
  • 资助金额:
    $ 34.42万
  • 项目类别:
Examining Carbon Monoxide to Treat Inflammatory Conditions using Experimental Colitis Models
使用实验性结肠炎模型检查一氧化碳治疗炎症的作用
  • 批准号:
    10437776
  • 财政年份:
    2019
  • 资助金额:
    $ 34.42万
  • 项目类别:
Examining Carbon Monoxide to Treat Inflammatory Conditions using Experimental Colitis Models
使用实验性结肠炎模型检查一氧化碳治疗炎症的作用
  • 批准号:
    10654693
  • 财政年份:
    2019
  • 资助金额:
    $ 34.42万
  • 项目类别:
HemeOxygenase-1 and Transplant Tolerance
HemeOxygenase-1 和移植耐受性
  • 批准号:
    8311915
  • 财政年份:
    2011
  • 资助金额:
    $ 34.42万
  • 项目类别:
Endogenous Gas Molecules As Transcription Factors
内源性气体分子作为转录因子
  • 批准号:
    8266362
  • 财政年份:
    2009
  • 资助金额:
    $ 34.42万
  • 项目类别:
Endogenous Gas Molecules As Transcription Factors
内源性气体分子作为转录因子
  • 批准号:
    8072062
  • 财政年份:
    2009
  • 资助金额:
    $ 34.42万
  • 项目类别:
Carbon Monoxide to Prevent Circulatory Collapse
一氧化碳防止循环衰竭
  • 批准号:
    6872969
  • 财政年份:
    2004
  • 资助金额:
    $ 34.42万
  • 项目类别:
Carbon Monoxide to Prevent Circulatory Collapse
一氧化碳防止循环衰竭
  • 批准号:
    6754133
  • 财政年份:
    2004
  • 资助金额:
    $ 34.42万
  • 项目类别:

相似国自然基金

草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
  • 批准号:
    72363025
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
  • 批准号:
    72374130
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:
华罗庚数学奖获得者座谈会及数学普及活动
  • 批准号:
    11926407
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Establishment of xenopus stem cell lines
非洲爪蟾干细胞系的建立
  • 批准号:
    10667834
  • 财政年份:
    2023
  • 资助金额:
    $ 34.42万
  • 项目类别:
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
  • 批准号:
    10643060
  • 财政年份:
    2023
  • 资助金额:
    $ 34.42万
  • 项目类别:
Descending engagement of brainstem neuronal circuits that govern orofacial motor behaviors
控制口面部运动行为的脑干神经元回路的下降参与
  • 批准号:
    10804889
  • 财政年份:
    2023
  • 资助金额:
    $ 34.42万
  • 项目类别:
Understanding Foxp2-Mediated Molecular Signaling in Fear Learning
了解恐惧学习中 Foxp2 介导的分子信号传导
  • 批准号:
    10662864
  • 财政年份:
    2023
  • 资助金额:
    $ 34.42万
  • 项目类别:
Understanding Foxp2-Mediated Molecular Signaling in Fear Learning
了解恐惧学习中 Foxp2 介导的分子信号传导
  • 批准号:
    10662864
  • 财政年份:
    2023
  • 资助金额:
    $ 34.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了