Mechanical regulation of maturation and pathology of engineered human heart tissues
工程人体心脏组织成熟和病理的机械调节
基本信息
- 批准号:10604901
- 负责人:
- 金额:$ 4.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAction PotentialsAdjuvant TherapyAdultAffectBioreactorsBirthCardiacCardiac MyocytesCause of DeathCell RespirationCell TherapyCharacteristicsCombined Modality TherapyDestinationsDevelopmentDiseaseDisease modelElectric StimulationElectron TransportEngineeringEnvironmentEnzymesGene ExpressionGene Expression ProfileGenerationsGeneticGoalsGrowthGrowth and Development functionHeartHeart DiseasesHeart ResearchHeart TransplantationHeart failureHumanHuman EngineeringImmunohistochemistryIn VitroMapsMeasurementMechanical StimulationMechanicsMetabolicMethodsMitochondriaModelingMolecularMolecular ProfilingMyocardial tissueMyocardiumMyosin ATPaseOpticsPathologicPathologyPatientsPhenotypePhysiologyPlayProcessPropertyProtein IsoformsProtocols documentationRecoveryRecovery SupportRegulationReproducibilityResearchResistanceRodent ModelRoleSignal PathwaySliceStretchingStructural ProteinStructureSupplementationSystemTestingTimeTissue SampleTissuesTransmission Electron MicroscopyTroponinUnited StatesUp-RegulationVentricularWorkcardiac regenerationcardiac tissue engineeringcardiogenesiscomplex IVdrug discoveryexperiencefetalfetus cellheart cellhuman diseaseimplantationin vitro Modelinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinsightleft ventricular assist devicemechanical loadmechanical stimulusmechanotransductionmetabolic abnormality assessmentmimeticsnovelpharmacologicpostnatalpostnatal developmentpostnatal humanprotein expressionreal-time imagesrepositoryresponsetissue culturetooltranscriptomics
项目摘要
ABSTRACT
The advent of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offers exciting
opportunities to study human cardiac disease and development in vitro. However, hiPSC-CMs are structurally
and functionally immature and more closely resemble fetal than adult CMs as evident from their reliance on
glycolytic instead of oxidative metabolism, weak contractions and excitability, and expression of immature
isoforms of structural proteins including myosin and troponin. This makes hiPSC-CMs inadequate for studies of
adult-acquired cardiac diseases, such as heart failure (HF), which remains the leading cause of death in the
United States and worldwide. The mechanical environment of CMs is widely recognized as a key regulator of
cardiac tissue development, physiology, and disease. In particular, dynamic changes in mechanical load
experienced by CMs during postnatal development may play a key role in their acquisition of a mature adult
phenotype. I hypothesize that presentation of dynamic, time-varying stretch (preload) and resistance to
contraction (afterload) to human engineered heart tissues (hEHTs) made of hiPSC-CMs will increase their
structural and functional maturity. Furthermore, I predict that mechanical overload of hEHTs will induce
pathological features characteristic of HF progression. To test these hypotheses, I have developed a novel
bioreactor where mechanical preload and afterload imposed on hEHTs can be independently varied with time of
culture via application of stretch and electrical stimulation. Using this platform, I will systematically study how
different regimes of progressively increased preload and afterload affect structure, contractile force generation,
propagation of action potentials, and transcriptomic and metabolic properties of hEHTs. Additionally, I will employ
real-time imaging to identify and characterize the mechanotransduction mechanisms underlying the observed
functional changes in the hEHTs. For mechanical overload regimes that induce molecular and functional
signatures of an HF phenotype, I will study if different adjuvant therapies combined with applied mechanical
unloading akin to use of left ventricular assist devices (LVADs) can reverse-remodel structural and functional
deficits in hEHTs. When completed, these studies will identify new mechanobiological drivers of in vitro CM
maturation and further the molecular understanding of HF disease and therapy.
抽象的
人类诱导多能干细胞来源的心肌细胞 (hiPSC-CM) 的出现提供了令人兴奋的机会
有机会在体外研究人类心脏病和发育。然而,hiPSC-CM 在结构上
功能上不成熟,比成人 CM 更类似于胎儿,这一点从它们对
糖酵解代替氧化代谢,收缩和兴奋性弱,表达不成熟
结构蛋白的亚型,包括肌球蛋白和肌钙蛋白。这使得 hiPSC-CM 不足以用于研究
成人获得性心脏病,例如心力衰竭(HF),它仍然是成年人死亡的主要原因
美国和世界各地。 CM 的机械环境被广泛认为是关键调节因素
心脏组织发育、生理学和疾病。特别是机械负载的动态变化
CM 在出生后发育过程中经历的经历可能在他们获得成熟的过程中发挥关键作用
表型。我假设动态的、随时间变化的拉伸(预载)和阻力的呈现
由 hiPSC-CM 制成的人类工程心脏组织 (hEHT) 的收缩(后负荷)将增加其
结构和功能的成熟度。此外,我预测 hEHT 的机械过载会导致
心力衰竭进展的病理特征。为了检验这些假设,我写了一本小说
生物反应器,其中施加在 hEHT 上的机械预载和后载可以随时间独立变化
通过应用拉伸和电刺激进行培养。利用这个平台,我将系统地学习如何
逐渐增加的预载和后载的不同机制会影响结构、收缩力的产生、
动作电位的传播以及 hEHT 的转录组和代谢特性。此外,我将聘用
实时成像来识别和表征观察到的机械传导机制
hEHT 的功能变化。对于诱导分子和功能的机械过载状态
HF 表型的特征,我将研究不同的辅助疗法是否与应用的机械疗法相结合
类似于使用左心室辅助装置(LVAD)的卸载可以逆转结构和功能
hEHT 的缺陷。完成后,这些研究将确定体外 CM 的新机械生物学驱动因素
成熟并进一步促进心力衰竭疾病和治疗的分子理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Christopher Scherba其他文献
Jacob Christopher Scherba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
ENABLING SUBMILLISECOND-TIMESCALE TWO-PHOTON RECORDING OF VOLTAGE DYNAMICS IN THREE DIMENSIONS IN VIVO
实现体内三维电压动态的亚毫秒级双光子记录
- 批准号:
10739579 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Implantable 3D fluorescence imaging with high-speed, addressable laser scanning in moving mice
通过高速、可寻址激光扫描对移动小鼠进行植入式 3D 荧光成像
- 批准号:
10614795 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
- 批准号:
10688211 - 财政年份:2022
- 资助金额:
$ 4.05万 - 项目类别:
The effects of cochlear pericytes and pericyte-related vascular pathology on hearing function
耳蜗周细胞及周细胞相关血管病理对听力功能的影响
- 批准号:
10553675 - 财政年份:2020
- 资助金额:
$ 4.05万 - 项目类别: