ENABLING SUBMILLISECOND-TIMESCALE TWO-PHOTON RECORDING OF VOLTAGE DYNAMICS IN THREE DIMENSIONS IN VIVO

实现体内三维电压动态的亚毫秒级双光子记录

基本信息

  • 批准号:
    10739579
  • 负责人:
  • 金额:
    $ 114.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Because neurons integrate and process information via modulation of their membrane potential, the ability to monitor voltage is critical to understanding how single and groups of neurons compute. Genetically encoded voltage indicators (GEVIs) —fluorescent proteins that report voltage dynamics as changes in brightness— are emerging as a preferred recording method because they can track voltage transients with high spatiotemporal resolution and cell type specificity. Particularly sought after are GEVIs that perform well under two-photon (2P) microscopy, the method of choice for imaging neural activity in highly scattering tissue such as the rodent brain. We have recently demonstrated that a combination of the 2P optical recording method ULoVE and the indicator JEDI-2P enable sustained (> 30 min), fast (> 1 kHz), deep-tissue (< 400 µm) monitoring of voltage dynamics in individual neuronal somas in awake behaving mice. However, ULoVE is fundamentally unable to record from cells and structures located in different focal planes. This is a critical limitation as neuronal computations typically involve cells or neurites located at different depths. The goal of this proposal is to address this technology gap and enable three-dimensional optical voltage recordings in awake-behaving mice. We propose to optimize 3D-CASH, a new method that enables the three-dimensional recording of calcium dynamics but whose lower signal-to-noise ratio prevents reliable voltage recordings. We propose several complementary but independent approaches to improving the signal-to-noise ratio of voltage recordings, including hardware-based strategies for efficiently exciting cells/structures while minimizing motion artifacts and neuropil background fluorescence (Aim 1). We also propose a new generation of GEVIs that improve the detectability of subthreshold and spikes (Aim 2) and optimized methods for subcellular localization of GEVIs to increase the signal from specific structures of interest such as dendrites or somas while reducing background contamination (Aim 3). We anticipate that this project will produce improved GEVIs of general utility for neuroscience applications and a new optical approach that enables three-dimensional voltage recordings in vivo. These new technologies will allow the neuroscience community to ask questions that are currently technically infeasible, paving the way for a more detailed understanding of dendritic integration and neural network computations in living animals.
项目概要/摘要 由于神经元通过调节膜电位来整合和处理信息,因此监测电压的能力对于理解单个和神经元组如何计算至关重要,GEVI 是一种荧光蛋白,可将电压动态报告为亮度的变化。新兴的一种首选记录方法,因为它们可以跟踪具有高时空分辨率和细胞类型特异性的电压瞬变,特别受追捧的是在双光子 (2P) 显微镜下表现良好的 GEVI,这是选择的方法。我们最近证明,2P 光学记录方法 ULoVE 和指示器 JEDI-2P 的结合可以实现持续(> 30 分钟)、快速(> 1 kHz)、深度的神经活动成像。然而,ULoVE 基本上无法记录位于不同焦平面的细胞和结构的电压动态。神经元计算通常涉及位于不同深度的细胞或神经突,该提案的目标是解决这一技术差距,并在清醒行为的小鼠中实现三维光学电压记录。我们建议优化 3D-CASH,这是一种能够实现的新方法。我们提出了几种互补但独立的方法来提高电压记录的信噪比,包括基于硬件的有效激励策略。我们还提出了新一代 GEVI,提高了阈下和尖峰的可检测性(目标 2),并优化了 GEVI 的亚细胞定位方法,以增加来自特定的信号。我们预计该项目将产生针对神经科学应用的通用 GEVI 和新的改进的 GEVI。这些新技术将使神经科学界能够提出目前技术上不可行的问题,为更详细地了解活体动物的树突整合和神经网络计算铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LAURENT BOURDIEU其他文献

LAURENT BOURDIEU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于增广拉格朗日函数的加速分裂算法及其应用研究
  • 批准号:
    12371300
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
  • 批准号:
    82304065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
  • 批准号:
    32372384
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
  • 批准号:
    62302265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
  • 批准号:
    82360529
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Implantable 3D fluorescence imaging with high-speed, addressable laser scanning in moving mice
通过高速、可寻址激光扫描对移动小鼠进行植入式 3D 荧光成像
  • 批准号:
    10614795
  • 财政年份:
    2023
  • 资助金额:
    $ 114.27万
  • 项目类别:
All holographic two-photon electrophysiology
全全息双光子电生理学
  • 批准号:
    10616937
  • 财政年份:
    2023
  • 资助金额:
    $ 114.27万
  • 项目类别:
Mechanical regulation of maturation and pathology of engineered human heart tissues
工程人体心脏组织成熟和病理的机械调节
  • 批准号:
    10604901
  • 财政年份:
    2023
  • 资助金额:
    $ 114.27万
  • 项目类别:
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
  • 批准号:
    10688211
  • 财政年份:
    2022
  • 资助金额:
    $ 114.27万
  • 项目类别:
The effects of cochlear pericytes and pericyte-related vascular pathology on hearing function
耳蜗周细胞及周细胞相关血管病理对听力功能的影响
  • 批准号:
    10553675
  • 财政年份:
    2020
  • 资助金额:
    $ 114.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了