Interrogating and rewiring cell signaling pathways in CAR-T cells with synthetic phosphotyrosine recognition domains
具有合成磷酸酪氨酸识别域的 CAR-T 细胞中询问和重新布线细胞信号通路
基本信息
- 批准号:10617843
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdvanced DevelopmentAffectAffinityAntigensAttenuatedAutomobile DrivingBindingBiologyCAR T cell therapyCell LineCell physiologyCellsCellular biologyCellular immunotherapyChemicalsComplexCytoplasmData AnalysesDevelopmentEngineeringEnvironmentEnzymesEvaluationEventFutureGoalsGovernmentHeadHematologic NeoplasmsHematopoietic NeoplasmsHuman EngineeringImmune systemImmunosuppressionIn SituIn VitroIndividualJurkat CellsKnowledgeLabelLaboratoriesLibrariesLigationMalignant NeoplasmsMediatingMentorsMethodsModificationOutcomeOutputPD-1 pathwayPathway interactionsPersonsPhasePhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPhosphotyrosinePostdoctoral FellowProcessProtein EngineeringProteinsProteomicsRecombinant AntibodyRecombinantsResearchResistanceSafetySignal PathwaySignal TransductionSignaling ProteinSolid NeoplasmSpecificityStructureT-LymphocyteTechnologyTestingTherapeuticTrainingTumor PromotionTumor-associated macrophagesTyrosine PhosphorylationWorkanti-canceranticancer researchcancer immunotherapychimeric antigen receptorchimeric antigen receptor T cellscytokinedesignexhaustionimprovedinnovationinorganic phosphatemutantnovelnovel strategiespost-doctoral trainingpreventprogrammed cell death ligand 1programmed cell death protein 1programsprotein structurerational designrecruitresponsescreeningskillssuccesssynthetic biologytargeted treatmenttooltranslational approachtumortumor microenvironmenttumor-immune system interactions
项目摘要
Project Summary
Among recent breakthroughs in treating hematopoietic malignancies, chimeric antigen receptor (CAR)-T
cell therapy is one of the most promising advances in cancer immunotherapy. However, CAR-T cells have
shown limited success targeting solid tumors. One major hurdle is the immunosuppressive tumor
microenvironment of solid tumors that promotes T-cell exhaustion. Another challenge is a poor understanding
of how CAR structure impacts the signaling mechanisms driving T cell function, which has prevented the
rational design of a superior CAR therapeutic with potent anti-tumor activity and resistance to exhaustion.
I am a Damon Runyon Cancer Research Postdoctoral fellow at UCSF. My mentor is Dr. James Wells, an
expert in chemical biology and protein engineering, and my co-mentor is Dr. Arthur Weiss, an expert in T cell
biology. Tyrosine phosphorylation is the central component of the signaling pathways of CAR-T cells but the
tools available to study pY modifications are very limited. During my postdoctoral training, I developed an
innovative and generalizable platform called “pY-Targeting by Recombinant Antibody Pairs” or “pY-TRAP” to
engineer highly specific and tight pY binding domains. This revolutionary tool is the first in vitro method for
engineering specific binders against pY-modifications in three-dimensional protein structures. It provides a
platform for developing strategies to engineer and to rewire pY-mediated signaling pathways in CAR-T cells.
In this work, I propose to develop pY-TRAP-based strategies to address key challenges in CAR-T cell
therapies. In Aim 1, I will determine how differing CAR structure modulates the CAR interactome using a novel
pY-dependent proximity ligation approach. This work will reveal key differences in the CAR signalosome for
various CAR designs and expose the mechanisms behind their functional divergence. In Aim 2, I will establish
a screening method to determine how varying CAR structures affect the cellular response to PD-1 signaling.
This work will further unveil how to rationally engineer CAR-T cells with enhanced resistance to
immunosuppression. In Aim 3, I will engineer a synthetic PD-1 pathway in CAR-T cells designed to counteract
the original immunosuppressive function of the pathway1. This is a fundamentally different approach relative to
existing strategies to make CAR-T cells more resistant to TME-associated immunosuppressive signals. Taken
together, the studies outlined in this proposal will lead to a deeper understanding of CAR-T cell biology,
provide knowledge to inform future CAR designs, and expose new strategies to engineer and optimize
signaling outcomes in cells to advance the development of cell therapeutics.
With the support of my mentors, collaborators, consultants and the great research environment at UCSF, I
will receive training in proteomics, quantitative data analysis, and T cell biology. These skills will help me reach
my long-term goal of becoming the head of a laboratory performing rigorous scientific research investigating
novel strategies to engineer the human immune system.
1 Aim 3 contains proprietary/privileged information that Dr. Xin Zhou requests not be released to persons outside the government, except for purposes of
review and evaluation.
项目概要
在治疗造血系统恶性肿瘤的最新突破中,嵌合抗原受体(CAR)-T
细胞疗法是癌症免疫疗法中最有前途的进展之一,然而,CAR-T 细胞具有以下优势。
针对实体瘤的成功有限,其中一个主要障碍是免疫抑制肿瘤。
促进 T 细胞耗竭的实体瘤微环境的另一个挑战是了解不足。
CAR 结构如何影响驱动 T 细胞功能的信号机制,从而阻止了
合理设计具有有效抗肿瘤活性和抗衰竭性的优质 CAR 疗法。
我是加州大学旧金山分校的达蒙·鲁尼恩癌症研究博士后研究员,我的导师是詹姆斯·威尔斯博士。
化学生物学和蛋白质工程专家,我的共同导师是T细胞专家Arthur Weiss博士
生物学上,酪氨酸磷酸化是 CAR-T 细胞信号通路的核心组成部分。
在我的博士后培训期间,可用于研究 pY 修饰的工具非常有限。
称为“pY-Targeting by Recombinant Antibody Pairs”或“pY-TRAP”的创新和通用平台
这种革命性的工具是设计高度特异性和紧密的 pY 结合域的第一个体外方法。
针对三维蛋白质结构中的 pY 修饰设计特异性结合剂。
用于开发策略来设计和重新连接 CAR-T 细胞中 pY 介导的信号通路的平台。
在这项工作中,我建议开发基于 pY-TRAP 的策略来解决 CAR-T 细胞的关键挑战
在目标 1 中,我将使用一种新颖的方法确定不同的 CAR 结构如何调节 CAR 相互作用组。
pY 依赖性邻近连接方法将揭示 CAR 信号体的关键差异。
在目标 2 中,我将建立各种 CAR 设计并揭示其功能差异背后的机制。
一种确定不同 CAR 结构如何影响细胞对 PD-1 信号传导反应的筛选方法。
这项工作将进一步揭示如何合理设计具有增强抗性的 CAR-T 细胞。
在目标 3 中,我将在 CAR-T 细胞中设计一条合成的 PD-1 通路,旨在抵消免疫抑制。
通路的原始免疫抑制功能1 这是一种根本不同的方法。
现有策略使 CAR-T 细胞对 TME 相关的免疫抑制信号具有更强的抵抗力。
总之,该提案中概述的研究将导致对 CAR-T 细胞生物学的更深入了解,
提供知识来指导未来的 CAR 设计,并公开新的策略来设计和优化
细胞中的信号转导结果可促进细胞疗法的发展。
在我的导师、合作者、顾问和加州大学旧金山分校良好的研究环境的支持下,我
将接受蛋白质组学、定量数据分析和 T 细胞生物学方面的培训,这些技能将帮助我达到目标。
我的长期目标是成为实验室负责人,进行严格的科学研究
改造人类免疫系统的新策略。
1 目标 3 包含周鑫博士要求不得向政府以外人员透露的专有/特权信息,除非出于以下目的:
审查和评价。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Zhou其他文献
Xin Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Zhou', 18)}}的其他基金
Engineering programmable enzymes for proteome editing
用于蛋白质组编辑的工程可编程酶
- 批准号:
10686522 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Detecting structural variants in a large population of samples through high-throughput sequencing data
通过高通量测序数据检测大量样本中的结构变异
- 批准号:
10707270 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Detecting structural variants in a large population of samples through high-throughput sequencing data
通过高通量测序数据检测大量样本中的结构变异
- 批准号:
10797960 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
New Statistical Methods for Cox Regression with Measurement Errors in Cancer and Nutritional Epidemiology
癌症和营养流行病学中具有测量误差的 Cox 回归的新统计方法
- 批准号:
10202076 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
New Statistical Methods for Cox Regression with Measurement Errors in Cancer and Nutritional Epidemiology
癌症和营养流行病学中具有测量误差的 Cox 回归的新统计方法
- 批准号:
10409754 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Interrogating and rewiring cell signaling pathways in CAR-T cells with synthetic phosphotyrosine recognition domains
具有合成磷酸酪氨酸识别域的 CAR-T 细胞中询问和重新布线细胞信号通路
- 批准号:
10573420 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Interrogating and rewiring cell signaling pathways in CAR-T cells with synthetic phosphotyrosine recognition domains
具有合成磷酸酪氨酸识别域的 CAR-T 细胞中询问和重新布线细胞信号通路
- 批准号:
10260568 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
- 批准号:
10742435 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
- 批准号:
10680043 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: