Systems-to-structure approaches for defining mitochondrial protein function
定义线粒体蛋白质功能的系统到结构方法
基本信息
- 批准号:10592293
- 负责人:
- 金额:$ 64.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAnabolismAreaAutomobile DrivingBinding ProteinsBiochemicalBiochemistryBioenergeticsBiogenesisBiologyCalibrationCellsCellular biologyDiseaseEukaryotic CellFunctional disorderGoalsHumanInborn Errors of MetabolismInfrastructureKnowledgeLipid BindingMalignant NeoplasmsMass Spectrum AnalysisMetabolismMitochondriaMitochondrial ProteinsNatureNon-Insulin-Dependent Diabetes MellitusOrganellesOrphanParkinson DiseasePathway interactionsPhosphotransferasesPositioning AttributeProcessProteinsProteomeResearchRoleSignal TransductionStructureSystemTherapeuticUbiquinoneYeastscell typedesigndimensional analysishuman diseaseknockout genemeetingsmitochondrial dysfunctionnovelnovel therapeutic interventionposttranscriptionalprogramsprotein functionprotein protein interactionsystematic biology
项目摘要
PROJECT SUMMARY
Mitochondria are centers of metabolism and signaling whose function is essential to all but a few eukaryotic cell
types. Despite their position as the iconic powerhouses of cellular biology, many aspects of mitochondria remain
remarkably obscure—a fact that contributes to our near complete inability to address mitochondrial dysfunction
therapeutically. Such dysfunction is associated with a spectrum of rare inborn errors of metabolism and an
increasing number of common diseases—including Parkinson’s, Alzheimer’s, various cancers, and type 2
diabetes—often through distinct means. For instance, aberrant mitochondrial biogenesis can fail to properly set
cellular mitochondrial content; dysregulated signaling processes can fail to calibrate mitochondrial activity to
changing cellular needs; and malfunctioning proteins can render core bioenergetic processes ineffectual. A major
bottleneck to understanding—and ultimately addressing—these processes is that the proteins driving them have
often not been identified. Concurrently, the functions of hundreds of known mitochondrial proteins that may fulfill
these roles are undefined, or at best are poorly understood. In 2008, I led an integrative effort to generate a
comprehensive compendium of the mammalian mitochondrial proteome—termed MitoCarta—that doubled the
number of known mammalian mitochondrial proteins and exposed this major gap in knowledge: A striking ~300
of the ~1100 proteins had no annotated function, including ~50 that are now directly associated with human
disease. Thus, the high-level goal of my research program is to achieve a more comprehensive
understanding of mitochondrial biology by systematically establishing the functions of orphan
mitochondrial proteins and their roles within disease-related processes. We do so by first devising novel,
multi-dimensional analyses designed to make new connections between these proteins and established
pathways and processes. These include customized, high-throughput protein-protein interaction screens, large-
scale mass spectrometry-based profiling of yeast and human cell gene knockouts, and computational
approaches. We then employ mechanistic and structural approaches to define the functions of select proteins at
biochemical depth, including ancient and atypical kinases and lipid binding proteins that enable the mitochondrial
coenzyme Q biosynthesis pathway and other essential metabolic processes. Finally, we investigate how post-
transcriptional and post-translational regulators operate to establish a customized mitochondrial infrastructure
capable of meeting changing cellular needs. Overall, by purposefully elucidating the unexplored areas of
mitochondrial biology, we are rapidly arriving at a more complete understanding of what these organelles do and
how their protein componentry enables their myriad functions. These efforts promise to help establish a deep,
mechanistic understanding of mitochondrial biochemistry that will motivate novel therapeutic strategies for the
vast array of human disorders rooted in mitochondrial dysfunction.
!
项目概要
线粒体是新陈代谢和信号传导的中心,其功能对除少数真核细胞之外的所有细胞都至关重要
尽管线粒体是细胞生物学的标志性动力源,但线粒体的许多方面仍然存在。
异常模糊——这一事实导致我们几乎完全无法解决线粒体功能障碍
在治疗上,这种功能障碍与一系列罕见的先天性代谢缺陷有关。
常见疾病的数量不断增加,包括帕金森氏症、阿尔茨海默氏症、各种癌症和 2 型癌症
糖尿病——通常通过不同的方式,例如,异常的线粒体生物发生可能无法正确设置。
细胞线粒体含量;失调的信号过程可能无法校准线粒体活性
细胞需求的变化和蛋白质的功能障碍会导致核心生物能量过程失效。
理解并最终解决这些过程的瓶颈是驱动它们的蛋白质
同时,数百种已知线粒体蛋白的功能通常尚未被确定。
这些角色尚未定义,或者充其量是人们对其知之甚少。2008 年,我领导了一项综合工作,以生成一个角色。
哺乳动物线粒体蛋白质组综合纲要(称为 MitoCarta)使
已知哺乳动物线粒体蛋白的数量,并暴露了这一知识上的重大差距:惊人的约 300
约 1100 种蛋白质中的约 50 种没有注释功能,其中约 50 种蛋白质现在与人类直接相关
因此,我的研究计划的高级目标是实现更全面的疾病。
通过系统地建立孤儿的功能来了解线粒体生物学
我们首先设计新颖的线粒体蛋白及其在疾病相关过程中的作用。
多维分析旨在在这些蛋白质之间建立新的联系并建立
这些途径和过程包括定制的、高通量的蛋白质-蛋白质相互作用筛选、大规模-
基于规模质谱分析的酵母和人类细胞基因敲除,以及计算
然后,我们采用机械和结构方法来定义所选蛋白质的功能。
生化深度,包括古老的非典型激酶和脂质结合蛋白,使线粒体
最后,我们研究了辅酶 Q 生物合成途径和其他重要的代谢过程。
转录和翻译后调节因子的作用是建立定制的线粒体基础设施
总体而言,通过有目的地阐明未探索的领域,能够满足不断变化的细胞需求。
随着线粒体生物学的发展,我们正在迅速对这些细胞器的作用有了更全面的了解,
它们的蛋白质成分如何发挥其多种功能,这些努力有望帮助建立一种深层的、
对线粒体生物化学的机制理解将激发新的治疗策略
大量人类疾病的根源在于线粒体功能障碍。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David J Pagliarini其他文献
David J Pagliarini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David J Pagliarini', 18)}}的其他基金
Systems-to-structure approaches for defining mitochondrial protein function
定义线粒体蛋白质功能的系统到结构方法
- 批准号:
10370341 - 财政年份:2019
- 资助金额:
$ 64.58万 - 项目类别:
Driving Biomedical Projects 1-Mitochondrial phophorylatioon signaling
推动生物医学项目 1-线粒体磷酸化信号传导
- 批准号:
8998787 - 财政年份:2016
- 资助金额:
$ 64.58万 - 项目类别:
Technologies for PTM discovery and functional mapping p. 505
PTM 发现和功能映射技术
- 批准号:
8998786 - 财政年份:2016
- 资助金额:
$ 64.58万 - 项目类别:
Establishing the role of the atypical kinase ADCK3 in mitochondrial metabolism
确定非典型激酶 ADCK3 在线粒体代谢中的作用
- 批准号:
8765976 - 财政年份:2014
- 资助金额:
$ 64.58万 - 项目类别:
Establishing the role of the atypical kinase ADCK3 in mitochondrial metabolism
确定非典型激酶 ADCK3 在线粒体代谢中的作用
- 批准号:
8900321 - 财政年份:2014
- 资助金额:
$ 64.58万 - 项目类别:
Regulation of Mitochondrial Function by Orphan Protein Phosphatases
孤儿蛋白磷酸酶对线粒体功能的调节
- 批准号:
10221674 - 财政年份:2013
- 资助金额:
$ 64.58万 - 项目类别:
Regulation of Mitochondrial Metabolism by Post-Translational Modifications
翻译后修饰对线粒体代谢的调节
- 批准号:
8482787 - 财政年份:2013
- 资助金额:
$ 64.58万 - 项目类别:
Regulation of Mitochondrial Metabolism by Post-Translational Modifications
翻译后修饰对线粒体代谢的调节
- 批准号:
9262822 - 财政年份:2013
- 资助金额:
$ 64.58万 - 项目类别:
Regulation of Mitochondrial Function by Orphan Protein Phosphatases
孤儿蛋白磷酸酶对线粒体功能的调节
- 批准号:
10405514 - 财政年份:2013
- 资助金额:
$ 64.58万 - 项目类别:
Quantitative Mitochondrial Proteomics of Healthy and Diabetic Mice
健康和糖尿病小鼠的定量线粒体蛋白质组学
- 批准号:
7821060 - 财政年份:2009
- 资助金额:
$ 64.58万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 64.58万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 64.58万 - 项目类别:
Investigate the utility of APLP1 as an endosomal biomarker for Alzheimer's Disease in Down Syndrome
研究 APLP1 作为唐氏综合症阿尔茨海默氏病内体生物标志物的效用
- 批准号:
10727134 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别: