Evaluation of artificial intelligence-controlled CPR to improve vital organ perfusion and survival during prolonged resuscitation
评估人工智能控制的心肺复苏在长时间复苏期间改善重要器官灌注和生存的效果
基本信息
- 批准号:10591524
- 负责人:
- 金额:$ 58.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAlgorithmsAmerican Heart AssociationAnimal ExperimentsApplications GrantsArtificial IntelligenceBasic ScienceBiofeedbackBlood flowCarbon DioxideCardiacCardiopulmonary ResuscitationCerebrumCessation of lifeCharacteristicsChest wall structureChoices and ControlChronicCirculationClinicalClinical TrialsCollaborationsCoronary ArteriosclerosisCoronary heart diseaseDataDatabasesDevice or Instrument DevelopmentDevicesE-learningEarly MobilizationsEvaluationFamily suidaeFeedbackFrequenciesFutureGenerationsGoalsHospitalsHourHumanKnowledgeLearningLightLinear RegressionsMachine LearningMeasurementMeasuresMechanicsMetabolicMethodsModelingNear-Infrared SpectroscopyNeurologicOrganOutcomeOxygenPatientsPerformancePerfusionPhase I Clinical TrialsPre-Clinical ModelProcessPublishingRecommendationResearchResuscitationSurvival RateSystemTechniquesTestingTimeTrainingUnited StatesValidationVentricular FibrillationVentricular Tachycardiaalgorithm trainingclinic readyclinically relevantcoronary perfusionexperienceexperimental studyhemodynamicsimprovedin vivoindexinginnovationmachine learning algorithmmachine learning prediction algorithmneural networkout-of-hospital cardiac arrestporcine modelpre-clinicalprediction algorithmpressureprospectivetime intervalverification and validation
项目摘要
Project Summary / Abstract
Almost 400,000 cases of out-of-hospital cardiac arrest (OHCA) occur each year in the United States. In
patients requiring cardiopulmonary resuscitation (CPR) for prolonged periods, current CPR methods are
unable to maintain adequate blood flow and oxygen delivery to the vital organs. Survival is <10% in patients
with shockable rhythms and ~0% in those with non-shockable rhythms. Current American Heart Association
(AHA) recommendations for CPR follow a “one-size-fits-all” paradigm. Our goal is to improve vital
organ perfusion during prolonged CPR by “personalizing” compression/decompression
therapy with a dynamic CPR method that changes compression characteristics over the course of
CPR after taking into account the temporal changes of chest wall compliance and hemodynamics in order to
increase the rate of neurologically intact survival after OHCA.
In this grant proposal, we are investigating the deployment of machine learning algorithms incorporated
into a mechanical CPR device to predict and optimize hemodynamics during CPR. We will use state-of-the-art
dynamical modeling in conjunction with closed-loop control algorithms to
individualize CPR characteristics and optimize temporal blood flow. Our preliminary results suggest that
deployment of machine learning prediction algorithms paired with control algorithms in a preclinical Ventricular
Fibrillation model can adapt compression and decompression depth in real time, resulting in increased vital
organ blood flow as compared to standard CPR techniques Based on these results, we hypothesize that
optimization of compression depth, decompression depth, duty cycle, and compression rate of CPR will lead
to better outcomes. Our proposed research will: 1) identify the most promising algorithm for the prediction of
CPR hemodynamics 2) identify the best control algorithm to pair with this prediction algorithm in terms of
optimizing CPR hemodynamics and return of spontaneous circulation 3) use the prediction and control pairing
to improve 48h neurologically intact survival in a porcine model of ventricular fibrillation, as compared to
standard CPR techniques. Throughout this process, we will identify non-invasive alternative measurements to
provide to the algorithms with the ultimate goal of proceeding with device development and human trials.
项目概要/摘要
美国每年发生近 40 万例院外心脏骤停 (OHCA) 病例。
对于需要长时间心肺复苏(CPR)的患者,目前的CPR方法是
无法维持重要器官的足够血流和氧气输送的患者存活率<10%。
具有可电击节律的患者和具有不可电击节律的患者约 0% 当前美国心脏协会。
(AHA) 对心肺复苏的建议遵循“一刀切”的范式,我们的目标是改善生命体征。
通过“个性化”加压/减压实现长时间心肺复苏期间的器官灌注
采用动态 CPR 方法进行治疗,该方法会在治疗过程中改变按压特性
考虑到胸壁顺应性和血流动力学的时间变化后进行心肺复苏,以便
提高 OHCA 后神经系统完整的存活率。
在这项拨款提案中,我们正在研究机器学习算法的部署
我们将使用最先进的技术来预测和优化心肺复苏期间的血流动力学。
动态建模与闭环控制算法相结合
我们的初步结果表明,个性化心肺复苏特征并优化颞部血流。
在临床前心室中部署机器学习预测算法与控制算法相结合
颤动模型可以实时调整按压和减压深度,从而增加生命力
与标准心肺复苏技术相比的器官血流量基于这些结果,我们勇敢地说
心肺复苏的按压深度、减压深度、占空比和按压率的优化将导致
我们提出的研究将:1)确定最有前途的预测算法。
CPR 血流动力学 2) 确定与该预测算法配对的最佳控制算法:
优化 CPR 血流动力学和自主循环恢复 3) 使用预测和控制配对
与相比,提高心室颤动猪模型的 48 小时神经系统完整存活率
在整个过程中,我们将确定非侵入性替代测量方法。
为算法提供最终目标,即进行设备开发和人体试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Demetris Yannopoulos其他文献
Demetris Yannopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Demetris Yannopoulos', 18)}}的其他基金
Left ventricular physiological effects of veno-arterial ECMO support during cardiogenic shock
心源性休克时静脉-动脉 ECMO 支持的左心室生理效应
- 批准号:
10518818 - 财政年份:2022
- 资助金额:
$ 58.17万 - 项目类别:
Left ventricular physiological effects of veno-arterial ECMO support during cardiogenic shock
心源性休克时静脉-动脉 ECMO 支持的左心室生理效应
- 批准号:
10668465 - 财政年份:2022
- 资助金额:
$ 58.17万 - 项目类别:
Evaluation of artificial intelligence-controlled CPR to improve vital organ perfusion and survival during prolonged resuscitation
评估人工智能控制的心肺复苏在长时间复苏期间改善重要器官灌注和生存的效果
- 批准号:
10392491 - 财政年份:2021
- 资助金额:
$ 58.17万 - 项目类别:
Evaluation of artificial intelligence-controlled CPR to improve vital organ perfusion and survival during prolonged resuscitation
评估人工智能控制的心肺复苏在长时间复苏期间改善重要器官灌注和生存的效果
- 批准号:
10186125 - 财政年份:2021
- 资助金额:
$ 58.17万 - 项目类别:
Reperfusion Injury Protection Strategies During Basic Life Support
基本生命支持期间的再灌注损伤保护策略
- 批准号:
8737966 - 财政年份:2013
- 资助金额:
$ 58.17万 - 项目类别:
Reperfusion Injury Protection Strategies During Basic Life Support
基本生命支持期间的再灌注损伤保护策略
- 批准号:
8875751 - 财政年份:2013
- 资助金额:
$ 58.17万 - 项目类别:
Sodium nitroprusside and mechanical CPR adjuncts for cardio-cerebral resuscitatio
硝普钠和机械心肺复苏辅助剂用于心脑复苏
- 批准号:
8306015 - 财政年份:2011
- 资助金额:
$ 58.17万 - 项目类别:
Sodium nitroprusside and mechanical CPR adjuncts for cardio-cerebral resuscitatio
硝普钠和机械心肺复苏辅助剂用于心脑复苏
- 批准号:
8153318 - 财政年份:2011
- 资助金额:
$ 58.17万 - 项目类别:
Sodium nitroprusside and mechanical CPR adjuncts for cardio-cerebral resuscitatio
硝普钠和机械心肺复苏辅助剂用于心脑复苏
- 批准号:
8676557 - 财政年份:2011
- 资助金额:
$ 58.17万 - 项目类别:
Sodium nitroprusside and mechanical CPR adjuncts for cardio-cerebral resuscitatio
硝普钠和机械心肺复苏辅助剂用于心脑复苏
- 批准号:
8472362 - 财政年份:2011
- 资助金额:
$ 58.17万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Evaluation of artificial intelligence-controlled CPR to improve vital organ perfusion and survival during prolonged resuscitation
评估人工智能控制的心肺复苏在长时间复苏期间改善重要器官灌注和生存的效果
- 批准号:
10392491 - 财政年份:2021
- 资助金额:
$ 58.17万 - 项目类别:
Evaluation of artificial intelligence-controlled CPR to improve vital organ perfusion and survival during prolonged resuscitation
评估人工智能控制的心肺复苏在长时间复苏期间改善重要器官灌注和生存的效果
- 批准号:
10186125 - 财政年份:2021
- 资助金额:
$ 58.17万 - 项目类别:
Novel computational techniques to detect the relationship between sitting patterns and metabolic syndrome in existing cohort studies.
在现有队列研究中检测坐姿模式与代谢综合征之间关系的新计算技术。
- 批准号:
10228732 - 财政年份:2018
- 资助金额:
$ 58.17万 - 项目类别:
Sedentary Behaviour Interrupted: Acute, medium and long-term effects on biomarkers of healthy aging, physical function and mortality
久坐行为中断:对健康老龄化、身体功能和死亡率的生物标志物的急性、中期和长期影响
- 批准号:
9278020 - 财政年份:2017
- 资助金额:
$ 58.17万 - 项目类别:
Novel Algorithms for Reducing Radiation Dose of CT Perfusion
减少 CT 灌注辐射剂量的新算法
- 批准号:
10220967 - 财政年份:2017
- 资助金额:
$ 58.17万 - 项目类别: