A fast CTOT for mapping whole brain hemodynamic activity in infants

用于绘制婴儿全脑血流动力学活动的快速 CTOT

基本信息

  • 批准号:
    10591932
  • 负责人:
  • 金额:
    $ 23.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Abstract Although Blood Oxygenation Level Dependent (BOLD) functional MRI (fMRI) is widely used to examine brain activation in adults, technical and logistical challenges frequently limit the ability to perform fMRI scans readily and longitudinally in infants, particularly in those at greatest risk for adverse neurodevelopmental outcomes and developmental delays. As a consequence, prognostics are made on general basis and cannot be individualized for optimal management. Functional Near-Infrared Spectroscopy – Diffuse Optical Tomography (fNIRS-DOT) imaging promises to be an alternative imaging technique. The current fNIRS-DOT imaging are limited to cortex regions and unable to interrogate deep structures such as the basal ganglia and thalamus that are often involved premature infant brain injury. Recently, we reported a continuous wave-based transcranial near infrared optical imaging system, called Cap-based Transcranial Optical Tomography (CTOT) that employed a single, GaAs intensified, CCD detector array to image whole brain hemodynamic activity in an awake child with seconds of acquisition time. However, the substantial readout time of the CCD detector and slow mechanical switching of source and detector fiber optics resulted in large dead-times that lengthened measurement times. Armed with our preliminary data of the clinical feasibility, we propose to speed up measurement times by adapting recent advances of fast read-out, scientific CMOS detector arrays along with microelectromechanical systems (MEMS) for novel dynamic range control, automated calibration, and optical switching of source and collection fiber optics in order to enable sub-second, dynamic CTOT mapping. The significance and innovation of this approach will be substantial, as never before has a nonintrusive, noninvasive methodology been developed to completely elucidate whole brain hemodynamic activity in infants. Our specific aims are to: (1) refine our CTOT imaging system with a single, GaAs intensified integrating detector, a MEMS optical switch for source fiber optics and a digital micromirror device for detector fiber optics to enable rapid, dynamic imaging; and (2) validate CTOTfNIRS derived hemodynamic activity in infants undergoing BOLD fMRI. If successful, the proposed work will provide the first, rapid whole brain CTOT imaging system for sensitive assessment of brain hemodynamic activity in infants. In the short term, CTOT images will eventually help parents, physicians and therapists best plan and care for children with brain deficits so that their quality of life is optimized as they progress through childhood.
抽象的 尽管血氧水平依赖性 (BOLD) 功能性 MRI (fMRI) 广泛用于检查大脑 成人的激活、技术和后勤方面的频繁挑战限制了轻松执行功能磁共振成像扫描的能力 纵向观察婴儿,特别是那些神经发育不良后果风险最大的婴儿, 因此,预测是在一般基础上进行的,不能个体化。 功能性近红外光谱 – 漫反射光学断层扫描 (fNIRS-DOT) 成像有望成为一种替代成像技术 目前的 fNIRS-DOT 成像仅限于皮层。 区域,无法询问经常涉及的基底神经节和丘脑等深层结构 最近,我们报道了基于连续波的经颅近红外光学。 成像系统,称为基于帽的经颅光学断层扫描 (CTOT),采用单个 GaAs 强化 CCD 探测器阵列可在数秒内对清醒儿童的整个大脑血流动力学活动进行成像 然而,CCD 探测器的读出时间较长且机械切换缓慢。 源和探测器光纤导致较长的死区时间,从而延长了测量时间。 根据我们的临床可行性初步数据,我们建议通过适应最近的技术来加快测量时间 快速读出、科学 CMOS 探测器阵列以及微机电系统 (MEMS) 的进步 用于新颖的动态范围控制、自动校准以及源和收集光纤的光学切换 为了实现亚秒级动态 CTOT 测绘,这种方法的意义和创新将得到体现。 是实质性的,因为以前从未开发出一种非侵入性、非侵入性的方法来完全 我们的具体目标是:(1)完善我们的 CTOT 成像。 系统配有单个 GaAs 增强型积分探测器、用于源光纤的 MEMS 光开关以及 用于探测器光纤的数字微镜装置,可实现快速动态成像;以及 (2) 验证 CTOTfNIRS 如果成功,拟议的工作将提供接受 BOLD fMRI 的婴儿的血流动力学活动。 第一个快速全脑 CTOT 成像系统,用于敏感评估大脑血流动力学活动 在短期内,CTOT 图像最终将帮助父母、医生和治疗师做出最佳计划和治疗。 照顾有大脑缺陷的儿童,以便他们在童年时期的成长过程中生活质量得到优化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Banghe Zhu其他文献

Banghe Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

随机阻尼波动方程的高效保结构算法研究
  • 批准号:
    12301518
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
  • 批准号:
    12371306
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
  • 批准号:
    62304037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
  • 批准号:
    42305048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Imaging early development of human neural circuits
人类神经回路早期发育的成像
  • 批准号:
    10503458
  • 财政年份:
    2022
  • 资助金额:
    $ 23.4万
  • 项目类别:
Pinpointing the Cerebellum's Contribution to Social Reward Processing
确定小脑对社会奖励处理的贡献
  • 批准号:
    10541308
  • 财政年份:
    2022
  • 资助金额:
    $ 23.4万
  • 项目类别:
Imaging early development of human neural circuits
人类神经回路早期发育的成像
  • 批准号:
    10684840
  • 财政年份:
    2022
  • 资助金额:
    $ 23.4万
  • 项目类别:
Imaging early development of human neural circuits
人类神经回路早期发育的成像
  • 批准号:
    10684840
  • 财政年份:
    2022
  • 资助金额:
    $ 23.4万
  • 项目类别:
Examining the etiology and clinical consequences of perivascular spaces in aging adults
检查老年人血管周围间隙的病因和临床后果
  • 批准号:
    9909779
  • 财政年份:
    2019
  • 资助金额:
    $ 23.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了