Imaging early development of human neural circuits
人类神经回路早期发育的成像
基本信息
- 批准号:10684840
- 负责人:
- 金额:$ 44.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescentAdultAffectAlgorithmsAnatomyAtlasesBackBasal GangliaBirthBrainBrain Hypoxia-IschemiaBrain imagingChildCirculationCognitive deficitsCommon VentricleCommunicationCompensationCongenital DisordersDataDevelopmentDevelopmental Delay DisordersDiseaseDropoutEarly treatmentEnsureFetal DevelopmentFetusFunctional Magnetic Resonance ImagingGoalsHeadHeart DiseasesHumanHypoxiaImageImaging technologyImpairmentInfantKnowledgeLeadLifeMagnetic Resonance ImagingMental disordersMethodsMotionNeurodevelopmental DisorderNeurologyNeuronsNeurosciencesOrganOutcomePatientsPregnancyPrevention strategyProcessReference StandardsReportingResearchResourcesSample SizeSamplingScanningSchool-Age PopulationSecond Pregnancy TrimesterSeriesSignal TransductionSingle ventricle congenital heart diseaseSliceStructureTechniquesTechnologyTestingTherapeutic InterventionTimeWorkanalysis pipelinecohortcongenital brain disordercongenital heart disorderfetalfunctional MRI scanhigh riskimage processingimprovedin uteroin vivoindependent component analysisinnovationinnovative technologiesmigrationneuralneural circuitneurodevelopmentprenatalprospectivereal-time imagesreconstructionsuccesssynaptogenesistemporal measurementtool
项目摘要
Imaging early development of human neural circuits
The overall objective of this research is to create new imaging technology that dramatically improves our
ability to analyze the development of brain function and functional networks before birth. Functional
magnetic resonance imaging (fMRI) provides a unique capability to study neural circuits and brain
functional connections in-vivo. Fetal fMRI acquisition and analysis, however, has been hampered by
three important challenges: 1) fetal motion disrupts the spatial and temporal continuity of the MRI signal,
2) geometric distortion is exacerbated by the motion of fetal and maternal organs, and 3) the anatomy
and function of the developing fetal brain is distinctly different from those of young children and adults,
thus current processing pipelines and atlases are inadequate for reliable fetal fMRI analysis. To address
these challenges, we pursue three specific aims in this study, that are focused on 1) developing a
prospectively motion navigated fetal fMRI acquisition technology, based on fast real-time image
processing, that compensates for the fetal head motion and geometric distortions during acquisitions; 2)
developing a post-acquisition processing technique that reconstructs an fMRI time series from motion-
corrected fetal fMRI data that are scattered in space and time because of motion and motion correction;
and 3) assessing the utility of fetal fMRI and the developed technologies to evaluate early development
of neural circuits and brain function in fetuses with congenital heart disease compared to healthy fetuses.
This contribution is important because it 1) mitigates a critical barrier to making progress in the field of
developmental neurology and neuroscience by allowing reliable use of fetal fMRI in studying normal vs.
abnormal development of the brain function; 2) improves the efficiency and efficacy of fetal fMRI through
prospectively adjusting scans to compensate for motion and geometric distortions, thus strengthens our
ability to study large cohorts; 3) provides tools and resources, including atlas-based parcellation and a
processing pipeline for the analysis of fetal fMRI; and 4) generates important knowledge about the
origins of disrupted neural development due to hypoxia ischemia in congenital heart disease. The
technology, resources, and knowledge developed in this study have a broad impact and are crucial for
advanced studies in developmental neuroscience and neurology, aiming to elucidate the potentially
devastating effects of adverse early life conditions including congenital disorders of the brain and heart. It
is hoped that these studies lead to improved understanding of the underlying causes of
neurodevelopmental disorders, leading to preventive strategies, therapies, and in some cases, cure.
人类神经回路早期发育的成像
这项研究的总体目标是创造新的成像技术,显着改善我们的
能够分析出生前大脑功能和功能网络的发育。功能性
磁共振成像(fMRI)提供了研究神经回路和大脑的独特能力
体内的功能连接。然而,胎儿功能磁共振成像采集和分析受到以下因素的阻碍:
三个重要的挑战:1)胎儿运动破坏了 MRI 信号的空间和时间连续性,
2) 胎儿和母体器官的运动加剧了几何变形,以及 3) 解剖结构
发育中的胎儿大脑的功能与幼儿和成人明显不同,
因此,当前的处理流程和图谱不足以进行可靠的胎儿功能磁共振成像分析。致地址
针对这些挑战,我们在本研究中追求三个具体目标,重点是 1) 开发
基于快速实时图像的前瞻性运动导航胎儿功能磁共振成像采集技术
处理,补偿采集过程中胎儿头部运动和几何扭曲; 2)
开发一种采集后处理技术,从运动中重建功能磁共振成像时间序列
修正了因运动和运动校正而在空间和时间上分散的胎儿fMRI数据;
3) 评估胎儿功能磁共振成像和已开发的技术来评估早期发育的效用
与健康胎儿相比,先天性心脏病胎儿的神经回路和大脑功能的变化。
这一贡献很重要,因为它 1) 减轻了在该领域取得进展的关键障碍
通过允许可靠地使用胎儿功能磁共振成像来研究正常与异常,从而发展神经学和神经科学。
大脑功能发育异常; 2)通过以下方式提高胎儿fMRI的效率和功效
前瞻性地调整扫描以补偿运动和几何扭曲,从而增强我们的能力
研究大群体的能力; 3)提供工具和资源,包括基于图集的分割和
用于分析胎儿功能磁共振成像的处理流程; 4)产生关于以下方面的重要知识:
先天性心脏病缺氧缺血导致神经发育障碍的根源。这
本研究中开发的技术、资源和知识具有广泛的影响,并且对于
发育神经科学和神经病学的高级研究,旨在阐明潜在的
不良的早期生活条件(包括先天性大脑和心脏疾病)造成的破坏性影响。它
希望这些研究能够加深对根本原因的理解
神经发育障碍,导致预防策略、治疗,在某些情况下甚至治愈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALI GHOLIPOUR-BABOLI其他文献
ALI GHOLIPOUR-BABOLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALI GHOLIPOUR-BABOLI', 18)}}的其他基金
Imaging early development of human neural circuits
人类神经回路早期发育的成像
- 批准号:
10503458 - 财政年份:2022
- 资助金额:
$ 44.92万 - 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
- 批准号:
10580011 - 财政年份:2022
- 资助金额:
$ 44.92万 - 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
- 批准号:
10345136 - 财政年份:2022
- 资助金额:
$ 44.92万 - 项目类别:
Advancing microstructural and vascular neuroimaging in perinatal stroke
推进围产期卒中的微观结构和血管神经影像学
- 批准号:
10332741 - 财政年份:2019
- 资助金额:
$ 44.92万 - 项目类别:
Advancing Microstructural and Vascular Neuroimaging in Perinatal Stroke
推进围产期卒中的微观结构和血管神经影像学
- 批准号:
10552663 - 财政年份:2019
- 资助金额:
$ 44.92万 - 项目类别:
Motion-robust super-resolution diffusion weighted MRI of early brain development
早期大脑发育的运动稳健超分辨率扩散加权 MRI
- 批准号:
9102082 - 财政年份:2014
- 资助金额:
$ 44.92万 - 项目类别:
Motion-robust super-resolution diffusion weighted MRI of early brain development
早期大脑发育的运动稳健超分辨率扩散加权 MRI
- 批准号:
9284277 - 财政年份:2014
- 资助金额:
$ 44.92万 - 项目类别:
相似国自然基金
推拿“舒筋调骨”干预青少年脊柱侧弯“肌肉力学-椎间载荷”平衡机制研究
- 批准号:82374607
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于数字表型青少年自杀行为转化风险测度及虚拟现实矫正干预研究
- 批准号:72304244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
青少年焦虑的预测和干预:基于跨通道恐惧泛化视角
- 批准号:32300928
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
视屏活动和CaMKII m6A甲基化修饰影响青少年抑郁症状的纵向研究
- 批准号:82304168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 44.92万 - 项目类别:
Early Life Stress Induced Mechanisms of Cardiovascular Disease Risk and Resilience
生命早期压力诱发心血管疾病风险和恢复力的机制
- 批准号:
10555121 - 财政年份:2023
- 资助金额:
$ 44.92万 - 项目类别:
Addressing Weight Bias Internalization to Improve Adolescent Weight Management Outcomes
解决体重偏差内在化问题,改善青少年体重管理成果
- 批准号:
10642307 - 财政年份:2023
- 资助金额:
$ 44.92万 - 项目类别:
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 44.92万 - 项目类别: