Elucidating the Role of Biomechanical Strain in Atrial Physiology and Arrhythmias
阐明生物力学应变在心房生理和心律失常中的作用
基本信息
- 批准号:10750632
- 负责人:
- 金额:$ 3.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-16 至 2027-09-15
- 项目状态:未结题
- 来源:
- 关键词:AffectAmericanAnimal ModelAnticoagulationArrhythmiaAtrial FibrillationAtrial FunctionBiological AssayBiomechanicsBiomedical EngineeringBiophysical ProcessBioreactorsCa(2+)-Calmodulin Dependent Protein KinaseCalciumCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular systemCharacteristicsClinicalDataDevelopmentDiseaseDisease modelElectron MicroscopyElectrophysiology (science)EnvironmentEsthesiaEvaluationFibroblastsFibrosisFoundationsFunctional disorderFutureGelGene ExpressionGenesGenetic TechniquesGoalsHeart AtriumHeart DiseasesHeart failureHumanIatrogenesisImpairmentIn VitroInflammatoryInterventionInvestigationIon ChannelKineticsKnowledgeLearningLeftMapsMeasuresMechanical StressMechanicsMediatingMethodologyModelingMorbidity - disease rateMotivationMyofibroblastMyosin ATPaseOpticsPathogenesisPathologicPathologyPathway interactionsPhasePhenotypePhysiciansPhysiologicalPhysiologyPopulationPredispositionProtein AnalysisProtein IsoformsProteinsProtocols documentationPulmonary veinsQuality of lifeRegulationReproducibilityResolutionRisk FactorsRoleScientistSignal TransductionStressStrokeSymptomsSystemTechniquesTechnologyTestingTissuesTrainingUniversitiesUp-RegulationWorkcardiac tissue engineeringcareerclinical imagingconditioningdesignelectrical propertyimprovedin vitro Modelin vivoinduced pluripotent stem cellmechanical forcemechanical loadmechanical propertiesmedical schoolsmortalitymuscle physiologynovelnovel strategiespharmacologicpressureside effectstandard of carestem cell biologysymptom treatmenttargeted treatmenttranslational potential
项目摘要
PROJECT SUMMARY/ABSTRACT
MOTIVATION: The burden of atrial fibrillation (AF) and its clinical consequences, which include stroke, heart
failure, and decreased quality of life, are expected to increase dramatically over the next several decades.
Despite this, few disease-modifying therapies exist, and symptomatic treatments are limited by side effects.
Leveraging fundamental discoveries in cardiac tissue biomechanics, this proposal takes a novel approach to
arrhythmia pathogenesis, uncovering biophysical mechanisms that underlie healthy atrial function and
pathological, pro-arrhythmic remodeling. Motivated by a desire to accurately model atrial physiology and
pathology, we use human induced pluripotent stem cell (hiPSC)-derived engineered heart tissue (EHT) and an
electro-mechanical bioreactor to delineate “healthy” vs “diseased” mechanical loading. AIMS: In Aim 1,
physiologically-inspired biomechanical strain is applied to atrial EHTs to improve their functional maturity at the
gene expression, contractile, and electrophysiological level. Successful completion of this aim will broadly
increase the applicability of engineered heart tissue for atrial disease modeling. In Aim 2, a substrate for atrial
arrhythmias will be induced by imposing pathological mechanical strain on atrial EHTs. These abnormal
mechanical strains are directly inspired by clinical imaging findings. Notably, abnormal mechanical loading of
tissue causes contractile dysfunction, along with upregulation of pathological remodeling genes, such as α-
SMA and calmodulin kinase. This suggests that a common, mechanosensitive pathway may be an attractive
upstream target for novel AF therapies. TRAINING: To enable these investigations, the applicant will pursue
new learning in stem cell biology, engineered heart tissue development, in vitro electrophysiology, and electron
microscopy. The training plan, overseen by two co-sponsors in complementary fields (biomedical
engineering/muscle physiology and electrophysiology), will emphasize acquisition of new scientific knowledge
and expertise; rigor, reproducibility, and generalizability of in vitro disease models; clinical correlations; and
professional development. The proposal will leverage cutting-edge technology and expertise at Yale University
and Yale School of Medicine, and fully support the applicant’s future career goal. RELEVANCE: AF affects
millions of Americans, and 10% of those over 80. The
项目概要/摘要
动机:心房颤动 (AF) 的负担及其临床后果,包括中风、心脏病
预计未来几十年,失败和生活质量下降将急剧增加。
尽管如此,目前很少有缓解疾病的疗法,而且对症治疗也受到副作用的限制。
该提案利用心脏组织生物力学的基本发现,采用一种新颖的方法
心律失常发病机制,揭示健康心房功能的生物物理机制和
病理性、促心律失常的重塑的动机是准确地模拟心房生理学和
在病理学方面,我们使用人类诱导多能干细胞 (hiPSC) 衍生的工程心脏组织 (EHT) 和
机电生物反应器来区分“健康”与“患病”机械负荷 目标:在目标 1 中,
受生理启发的生物力学应变应用于心房 EHT,以提高其功能成熟度
基因表达、收缩和电生理水平的成功完成将广泛地实现这一目标。
提高工程心脏组织在心房疾病模型中的适用性,目标 2:心房的基质。
对心房 EHT 施加病理性机械应变会诱发心律失常。
机械应变直接受到临床影像学结果的启发,值得注意的是,异常的机械负荷。
组织导致收缩功能障碍,同时上调病理重塑基因,例如 α-
SMA 和钙调蛋白激酶这表明常见的机械敏感途径可能是一种有吸引力的途径。
新型 AF 疗法的上游目标 培训:为了进行这些研究,申请人将进行研究。
干细胞生物学、工程心脏组织发育、体外电生理学和电子学的新知识
培训计划由互补领域(生物医学)的两位共同发起人监督。
工程学/肌肉生理学和电生理学),将强调获取新的科学知识
和专业知识;体外疾病模型的严谨性、可重复性和普遍性;
该提案将利用耶鲁大学的尖端技术和专业知识。
和耶鲁大学医学院,并全力支持申请人未来的职业目标。 相关性:房颤影响。
数百万美国人,其中 10% 是 80 岁以上的人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilhan Gokhan其他文献
Ilhan Gokhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Predictive Markers for Longitudinal TMJ Integrity
纵向颞下颌关节完整性的预测标记
- 批准号:
10648171 - 财政年份:2023
- 资助金额:
$ 3.26万 - 项目类别:
Individualized Profiles of Sensorineural Hearing Loss from Non-Invasive Biomarkers of Peripheral Pathology
周围病理学非侵入性生物标志物的感音神经性听力损失个体化概况
- 批准号:
10827155 - 财政年份:2023
- 资助金额:
$ 3.26万 - 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 3.26万 - 项目类别:
Dysregulation of Epithelial Metabolism and Regeneration by Sulfite Exposure in Pediatric Ulcerative Colitis
小儿溃疡性结肠炎亚硫酸盐暴露导致上皮代谢和再生失调
- 批准号:
10722914 - 财政年份:2023
- 资助金额:
$ 3.26万 - 项目类别: