3D Bioprinted Human Model of Duchenne Muscular Dystrophy (DMD) Cardiomyopathy to Study Disease Progression with Imposed Force and Precise Gene Editing
杜氏肌营养不良症 (DMD) 心肌病的 3D 生物打印人体模型,通过施加力和精确的基因编辑来研究疾病进展
基本信息
- 批准号:10628962
- 负责人:
- 金额:$ 53.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAccelerationBiological ModelsCRISPR/Cas technologyCalciumCardiacCardiac MyocytesCardiomyopathiesCell LineCellsComplexCytoskeletonDevelopmentDiseaseDisease ProgressionDuchenne cardiomyopathyDuchenne muscular dystrophyDystrophinEarly identificationExtracellular MatrixGenerationsGenesGenetic TranscriptionGlycoproteinsGoalsHealthHeartHeart DiseasesHeart InjuriesHeart failureHomeostasisHumanIndividualInjuryLengthLinkMechanical StressMechanicsMissionModelingMolecularMuscleMutationNational Heart, Lung, and Blood InstituteOrganOutcomePatientsPhenotypePhysiciansPhysiologicalPre-Clinical ModelPreventionProteinsPublic HealthPumpResearchResearch PersonnelResearch Project GrantsRoleSarcolemmaScientistSignal TransductionSkinTechnologyTestingTissuesadrenergic stressbase editingbioinkbioprintingcardiac tissue engineeringcareerclinically significantdesignearly satietyeffective therapyexon skippingfunctional restorationheart cellhuman diseasehuman modelinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinnovationmdx mousemechanical forcemechanical loadmechanotransductionmouse modelmuscular dystrophy mouse modelmutation correctionnovelnovel therapeuticspre-clinicalpressurepreventprime editingprotein expressionrestorationtherapy developmenttranscriptome sequencing
项目摘要
Duchenne muscular dystrophy (DMD) cardiomyopathy is ubiquitous, deadly, and results from mutations in the
dystrophin gene. Dystrophin is an essential component of cardiac mechanotransduction (MT) and distributes
mechanical stress across the sarcolemma. In DMD, the absence of dystrophin results in cardiomyocytes that
are vulnerable to contraction-induced damage, which accelerates disease progression. Our understanding of
the early progression of DMD cardiomyopathy is limited due to models that do not fully recapitulate human
disease, thus limiting development of effective therapies. Given the essential role of dystrophin in connecting the
contractile apparatus to the extracellular matrix (ECM) for MT, it is critical to augment DMD cardiomyopathy
models to include cell-ECM engagement with applied physiological force to recapitulate early changes at the
organ level necessary to test novel therapies. The human chambered muscle pump (hChaMP) can do just that.
The hChaMP is generated by 3D printing human induced pluripotent stem cells and bio-ink to yield a pump that
can be pressurized to impose progressive strain. The long-term goal is to determine mechanisms by which DMD
cardiomyopathy progresses to develop novel disease specific therapies to prevent cardiomyopathy. The overall
objective is to assess the role of altered MT and ECM dynamics in the absence of dystrophin on DMD
cardiomyopathy disease progression and to test dystrophin gene editing in a DMD hChaMP with volumetric
loading. The central hypothesis is that the loss of dystrophin leads to increased vulnerability to mechanical stress
resulting in early altered cardiac MT and ECM dynamics that promote disease progression and that early
dystrophin replacement will limit contraction-induced injury by restoring MT and ECM homeostasis and thereby
rescue DMD cardiomyopathy. Our central hypothesis will be tested in two specific aims: 1) To evaluate the
impact of altered MT on DMD cardiomyopathy disease progression using the hChaMP model system with
progressive volumetric loading; 2) To determine the impact of dystrophin restoration with DMD precise gene
editing on cardiac remodeling mechanisms dictating disease progression in DMD cardiomyopathy. In aim 1, we
will generate a DMD hChaMPs to assess the physiologic impact of increased volumetric pressure on the human
DMD phenotype early and later. In aim 2, we will introduce DMD precise gene editing to restore dystrophin both
early and late in DMD hChaMPs with volumetric loading and assess the physiologic and transcriptional changes.
At the successful completion of the proposed research, the expected outcomes of our study is the
characterization of early DMD cardiomyopathy progression with loading and the underlying molecular
mechanisms. The proposed research is innovative as it combines enabling technologies to develop a 3D
preclinical model of human DMD cardiomyopathy that mimics disease progression and correction with precise
gene editing. These findings will have a significant impact on human health by increasing our understanding of
disease progression and a strong basis for treating and preventing DMD cardiomyopathy.
杜氏肌营养不良症 (DMD) 心肌病普遍存在且致命,是由基因突变引起的
肌营养不良蛋白基因。抗肌营养不良蛋白是心脏机械转导 (MT) 的重要组成部分,并分布在
穿过肌膜的机械应力。在 DMD 中,肌营养不良蛋白的缺乏导致心肌细胞
容易受到收缩引起的损伤,从而加速疾病进展。我们的理解
由于模型不能完全再现人类,DMD 心肌病的早期进展受到限制
疾病,从而限制了有效疗法的开发。鉴于肌营养不良蛋白在连接
MT 的细胞外基质 (ECM) 收缩装置,对于增强 DMD 心肌病至关重要
模型包括细胞-ECM 与施加的生理力的相互作用,以重现细胞的早期变化
测试新疗法所需的器官水平。人体腔室肌肉泵 (hChaMP) 就能做到这一点。
hChaMP 通过 3D 打印人类诱导多能干细胞和生物墨水生成泵,
可以加压以施加渐进应变。长期目标是确定 DMD 的机制
心肌病不断发展,以开发新的疾病特异性疗法来预防心肌病。整体
目的是评估在 DMD 缺乏肌营养不良蛋白的情况下 MT 和 ECM 动力学改变的作用
心肌病疾病进展并在 DMD hChaMP 中测试肌营养不良蛋白基因编辑
加载中。核心假设是抗肌萎缩蛋白的丧失导致对机械应力的脆弱性增加
导致心脏 MT 和 ECM 动态的早期改变,从而促进疾病进展,并且早期
肌营养不良蛋白替代将通过恢复 MT 和 ECM 稳态来限制收缩引起的损伤,从而
拯救DMD心肌病。我们的中心假设将在两个具体目标上进行检验:1)评估
使用 hChaMP 模型系统改变 MT 对 DMD 心肌病疾病进展的影响
渐进式体积加载; 2) 确定DMD精确基因对肌营养不良蛋白恢复的影响
编辑心脏重塑机制决定 DMD 心肌病的疾病进展。在目标 1 中,我们
将生成 DMD hChaMP 来评估体积压力增加对人体的生理影响
DMD表型早期和晚期。在目标2中,我们将引入DMD精确基因编辑来恢复肌营养不良蛋白
在 DMD hChaMP 的早期和晚期进行体积负荷分析,并评估生理和转录变化。
在成功完成拟议的研究后,我们研究的预期结果是
早期 DMD 心肌病随负荷进展的特征和潜在的分子机制
机制。拟议的研究具有创新性,因为它结合了开发 3D 的支持技术
人类 DMD 心肌病的临床前模型,通过精确模拟疾病进展和纠正
基因编辑。这些发现将加深我们对人类健康的了解,从而对人类健康产生重大影响。
疾病进展以及治疗和预防 DMD 心肌病的坚实基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Forum D Kamdar其他文献
Forum D Kamdar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Forum D Kamdar', 18)}}的其他基金
Progressive loading of a human dystrophic cardiomyopathy 3D model to mimic disease and evaluate therapeutic
逐步加载人类营养不良性心肌病 3D 模型以模拟疾病并评估治疗效果
- 批准号:
10507078 - 财政年份:2022
- 资助金额:
$ 53.93万 - 项目类别:
Progressive loading of a human dystrophic cardiomyopathy 3D model to mimic disease and evaluate therapeutic
逐步加载人类营养不良性心肌病 3D 模型以模拟疾病并评估治疗效果
- 批准号:
10673143 - 财政年份:2022
- 资助金额:
$ 53.93万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 53.93万 - 项目类别:
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动的设计可减轻冠状动脉搭桥术后静脉移植失败的风险
- 批准号:
10683327 - 财政年份:2022
- 资助金额:
$ 53.93万 - 项目类别:
Clinically Applicable Orofacial Cleft Reconstruction Using Structural, Compositional Biomimetic Bone Scaffolds
使用结构、组合仿生骨支架进行临床适用的口面裂重建
- 批准号:
10671681 - 财政年份:2022
- 资助金额:
$ 53.93万 - 项目类别:
Development of 4D Flow MRI for Risk Stratification of Variceal Bleeding in Cirrhosis
开发 4D Flow MRI 用于肝硬化静脉曲张出血风险分层
- 批准号:
10538641 - 财政年份:2021
- 资助金额:
$ 53.93万 - 项目类别: