Ribosomes and Growth Regulation
核糖体和生长调节
基本信息
- 批准号:9160502
- 负责人:
- 金额:$ 30.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-08 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAneuploid CellsAnimalsCancer EtiologyCell CycleCell ProliferationCell SizeCell SurvivalCellsChildhoodCirrhosisDNA SequenceDefectDevelopmentDiamondDiamond-Blackfan anemiaDiseaseDrosophila genusEssential GenesExhibitsFeedbackGene DosageGene ExpressionGene TargetingGene-ModifiedGenesGeneticGenetic TranscriptionGenetic studyGenomeGenotypeGrowthGrowth and Development functionHeart DiseasesHeart HypertrophyHeterozygoteHistocompatibility TestingHumanImmunohistochemistryInheritedLabelLeadLongevityMaintenanceMalignant NeoplasmsMandibulofacial DysostosisMapsMicroscopyModelingMolecular GeneticsMutationNeurofibromin 2North American IndiansNorthern BlottingNucleic Acid Regulatory SequencesOrganOrganismPathway interactionsProcessProtein BiosynthesisRegulationResistanceResolutionRibosomal ProteinsRibosomal RNARibosomesRoleSpleenSyndromeTestingTissuesTranslationsTransmission Electron MicroscopybZIP Domainbasecell fixingcell growthcell typeimaginal discimprovedirradiationloss of functionmacromoleculemutantnovelnovel therapeuticsoverexpressionprogramsreproductivetranscription factortranscriptometranscriptome sequencing
项目摘要
Ribosomes are responsible for protein synthesis and therefore necessary for the growth
of all organs, in both normal development and in disease conditions such as cancer or
cardiac hypertrophy. A number of congenital conditions, collectively termed
ribosomopathies, result from defects in components of the ribosome or affect its
biosynthesis. It is unclear why ribosomopathies have such distinct effects from one
another, and it is unclear why mutations in ribosomal genes can cause cancer, since
they are required for growth. Reducing the number of ribosomal genes reduces growth
rate but surprisingly this has been found to be mainly due to the activation of a new,
previously unstudied gene that is believed to encode a transcription factor. To
understand how growth is affected, the target genes of this new transcription factor will
be identified using a combination of genetic and molecular genetic studies that are
possible in the fruitfly. To understand how the new pathway responds to ribosomal
protein gene copy number, the DNA sequences that react to such changes will be
mapped and characterized. The effect of ribosomal protein gene copy changes on the
number of ribosomes, and on the accumulation of their assembly intermediates will be
determined to indicate how gene expression is most likely affected. To explore what
advantage might accrue from a pathway that slows growth and development, the
implications for cell competition, the maintenance of cell size, and for organismal
longevity, resistance to genome damage, and body symmetry will be assessed. Given
that ribosomes are essential components of all cells, the results of these basic studies
are likely to improve understanding of growth in all organs, and diseases that affect
growth including cancer, heart disease, and ribosomopathies.
核糖体负责蛋白质合成,因此对于生长来说是必要的
在所有器官中,在正常发育和疾病中,例如癌症或
心脏肥大。许多先天性条件,共同称为
核糖体病,是由于核糖体成分缺陷或影响其核糖体病变的
生物合成。目前尚不清楚核糖体病为什么与一个具有如此明显的影响
另一个,尚不清楚为什么核糖体基因突变会引起癌症,因为
它们是增长所必需的。减少核糖体基因的数量减少了生长
速率,但令人惊讶的是,这主要是由于新的,
以前未研究的基因被认为编码转录因子。到
了解增长是如何影响的,该新转录因子的目标基因将
可以使用遗传学和分子遗传研究的组合来鉴定
在果蝇中可能。要了解新途径如何对核糖体做出反应
蛋白质基因拷贝数,反应这种变化的DNA序列将是
映射和特征。核糖体蛋白基因拷贝的影响对
核糖体的数量,以及组装中间体的积累
确定表明基因表达最有可能受到影响。探索什么
优势可能会从减慢增长和发展的途径中产生
对细胞竞争的影响,细胞大小的维持和有机体的影响
将评估寿命,对基因组损害的抵抗力和身体对称性。给出
核糖体是所有细胞的重要组成部分,这些基础研究的结果
可能会提高对所有器官增长的理解,以及影响影响的疾病
生长在内,包括癌症,心脏病和核糖症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas E Baker其他文献
Nicholas E Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas E Baker', 18)}}的其他基金
Identifying mechanisms that detect and eliminate aneuploid cells
识别检测和消除非整倍体细胞的机制
- 批准号:
10320458 - 财政年份:2021
- 资助金额:
$ 30.9万 - 项目类别:
Advanced Confocal Microscope in a multi-user facility
多用户设施中的先进共焦显微镜
- 批准号:
9274630 - 财政年份:2017
- 资助金额:
$ 30.9万 - 项目类别:
相似国自然基金
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
- 批准号:52372273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥UBC34通过介导ABA的合成与代谢调控盐胁迫应答的机制研究
- 批准号:32300248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
葡萄糖神经酰胺合成酶GCS调控植物磷代谢的分子机制研究
- 批准号:32300234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
- 批准号:
10750765 - 财政年份:2024
- 资助金额:
$ 30.9万 - 项目类别:
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 30.9万 - 项目类别:
The role of osteoblast progenitors in response to bone anabolic agents
成骨细胞祖细胞对骨合成代谢剂的反应的作用
- 批准号:
10404415 - 财政年份:2023
- 资助金额:
$ 30.9万 - 项目类别:
Center of Research Translation on Osteoporosis Bone Anabolic Therapies
骨质疏松症骨合成代谢疗法研究转化中心
- 批准号:
10404412 - 财政年份:2023
- 资助金额:
$ 30.9万 - 项目类别: