Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
基本信息
- 批准号:10612076
- 负责人:
- 金额:$ 20.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-20 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffinityAnimalsAreaArticular Range of MotionBindingBone ResorptionBone callusBone remodelingCell LineageCellsCicatrixDataDiseaseDrug Delivery SystemsFOLH1 geneFibrosisFractureFrequenciesGenesGeneticGenetic TranscriptionHistologicHistologyHomeHomingImpairmentIn VitroInflammatoryInflammatory ResponseInjectionsInjuryKineticsKnowledgeLabelMacrophageMaleic AnhydrideMechanicsMediatingMesenchymalModelingMolecularMolecular ProfilingMorphologyMusMyelogenousMyeloid CellsNatural regenerationOperative Surgical ProceduresOsteoclastsOutcomePathologicPeptidesPharmaceutical PreparationsPharmacotherapyPopulationProcessRecovery of FunctionReporterRiskS100A4 geneSiteStyrenesSystemTendon InjuriesTendon structureTestingTherapeuticTissuesTranslationsWorkbone fracture repaircell typecomparison controlfunctional disabilityfunctional improvementfunctional restorationhealinghigh rewardhigh riskimprovedin vivoin vivo imaginginhibitorinnovationknock-downleukemiamechanical propertiesmouse modelnanoparticlenanoparticle deliverynanoparticle drugnew therapeutic targetnovelnovel therapeutic interventionnovel therapeuticspharmacologicregenerativerepairedresponsesmall moleculetargeted treatmenttartrate-resistant acid phosphatasetherapeutic targettimelinetranscriptomic profilingtranslational potentialuptake
项目摘要
Project Summary
Following injury, tendons heal via a fibrotic scar-tissue response that impedes full functional restoration.
Translation of pharmacotherapies to enhance tendon healing has been hampered by a combination of limited
tendon targeting of systemic treatments, and insufficient identification of biologically informed therapeutic
targets. In this high-risk high-reward study we will address both of these critical knowledge gaps. We have
recently identified genetic knockdown of S100a4 as a novel model of functionally-enhanced tendon healing,
thereby identifying S100a4 as a novel therapeutic target to improve tendon healing. Moreover, we have used
spatial transcriptomic profiling to define the spatially distinct molecular processes that dictate the fibrotic tendon
healing process. Using this approach we defined a macrophage-rich cluster located between the highly
reactive tendon stubs at the injury site. This cluster was defined by enriched expression of Acp5, the gene
encoding for TRAP (Tartrate resistant acid phosphatase). Our preliminary data further demonstrate regions of
robust TRAP activity in the healing tendon. Here, we will capitalize on this exciting finding by leveraging our
work using a TRAP binding peptide (TBP) conjugated nanoparticle (NP) drug delivery system. We have
demonstrated enhanced homing and retention of TBP-NPs at sites of high TRAP activity including the bone
fracture callus and during pathologic bone remodeling. Here, we will test the central hypothesis that TRAP
binding peptide loaded nanoparticles (TBP-NPs) efficiently home to the healing tendon, are taken up by
macrophages and that TBP-NP delivery of an S100a4 inhibitor enhances tendon regeneration compared to
control TBP-NPs. In Aim 1 we will track the systemic and tendon-specific localization and retention of
systemically administered fluorescently labelled TBP-NPs compared to scrambled control peptide-NPs. In
addition, we will use a combination of cell-type specific fluorescent reporter mouse models to define the
specific cell populations that uptake TBP-NPs during tendon healing. In Aim 2 we will define the loading and
release profile of an S100a4 inhibitor on TBP-NPs and define the efficacy of TBP-NP drug delivery, compared
to free drug and control NPs, to inhibit S100a4 expression and enhance the tendon healing process.
Successful completion of these studies will establish a novel nanoparticle-mediate delivery system to target the
healing tendon with high efficiency and efficacy, thereby substantially enhancing the translational feasibility of
pharmacologically mediating improved tendon healing.
项目概要
受伤后,肌腱通过纤维化疤痕组织反应愈合,从而阻碍功能的全面恢复。
促进肌腱愈合的药物疗法的转化受到有限的组合的阻碍
全身治疗的肌腱靶向,以及生物学信息治疗的识别不足
目标。在这项高风险高回报的研究中,我们将解决这两个关键的知识差距。我们有
最近发现 S100a4 的基因敲除是一种功能增强肌腱愈合的新模型,
从而确定 S100a4 作为改善肌腱愈合的新治疗靶点。此外,我们还使用了
空间转录组分析来定义决定纤维化肌腱的空间不同分子过程
愈合过程。使用这种方法,我们定义了一个富含巨噬细胞的簇,位于高度
受伤部位的反应性肌腱残端。该簇是由 Acp5(基因)的富集表达定义的
TRAP(抗酒石酸酸性磷酸酶)的编码。我们的初步数据进一步表明
愈合肌腱中强大的 TRAP 活性。在这里,我们将利用我们的技术来利用这一令人兴奋的发现
使用 TRAP 结合肽 (TBP) 缀合纳米颗粒 (NP) 药物输送系统进行工作。我们有
证明 TBP-NP 在高 TRAP 活性位点(包括骨)的归巢和保留增强
骨折愈伤组织和病理性骨重塑过程中。在这里,我们将检验中心假设 TRAP
结合肽负载纳米颗粒(TBP-NP)有效地定位于愈合肌腱,被
与巨噬细胞相比,S100a4 抑制剂的 TBP-NP 递送可增强肌腱再生
控制 TBP-NP。在目标 1 中,我们将跟踪系统性和肌腱特异性的定位和保留
与乱序对照肽-NP 相比,全身施用荧光标记的 TBP-NP。在
此外,我们将使用细胞类型特异性荧光报告小鼠模型的组合来定义
在肌腱愈合过程中摄取 TBP-NP 的特定细胞群。在目标 2 中,我们将定义加载和
S100a4 抑制剂在 TBP-NP 上的释放曲线并确定 TBP-NP 药物递送的功效,比较
释放药物和控制 NP,抑制 S100a4 表达并增强肌腱愈合过程。
这些研究的成功完成将建立一种新型纳米颗粒介导的递送系统,以靶向
高效、有效地愈合肌腱,从而大大提高了转化的可行性
药理学介导改善肌腱愈合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle S. Benoit其他文献
Danielle S. Benoit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle S. Benoit', 18)}}的其他基金
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
- 批准号:
10830613 - 财政年份:2023
- 资助金额:
$ 20.33万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10467753 - 财政年份:2022
- 资助金额:
$ 20.33万 - 项目类别:
Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
- 批准号:
10461486 - 财政年份:2022
- 资助金额:
$ 20.33万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10709483 - 财政年份:2022
- 资助金额:
$ 20.33万 - 项目类别:
Bone-targeted polymer therapeutics for nonunion fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10371267 - 财政年份:2022
- 资助金额:
$ 20.33万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10733942 - 财政年份:2022
- 资助金额:
$ 20.33万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10681217 - 财政年份:2022
- 资助金额:
$ 20.33万 - 项目类别:
hiPSC-derived tissue mimetics of the retina blood barrier
hiPSC 衍生的视网膜血屏障组织模拟物
- 批准号:
10080730 - 财政年份:2020
- 资助金额:
$ 20.33万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
An immunotherapeutic IgY formulation against norovirus diarrhea
一种针对诺如病毒腹泻的免疫治疗 IgY 制剂
- 批准号:
10693530 - 财政年份:2023
- 资助金额:
$ 20.33万 - 项目类别:
Protease-activated-receptor-2 antagonists for treatment of migraine pain
蛋白酶激活受体 2 拮抗剂治疗偏头痛
- 批准号:
10602826 - 财政年份:2023
- 资助金额:
$ 20.33万 - 项目类别:
Roles of Rad and other CaV1.2 neighboring proteins in regulating cardiac function in health and disease
Rad 和其他 CaV1.2 邻近蛋白在健康和疾病中调节心脏功能中的作用
- 批准号:
10628915 - 财政年份:2023
- 资助金额:
$ 20.33万 - 项目类别:
The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
- 批准号:
10646631 - 财政年份:2023
- 资助金额:
$ 20.33万 - 项目类别:
Development of a Small Molecule Inhibitor of Fortilin for Atherosclerosis Treatment and Prevention
开发用于治疗和预防动脉粥样硬化的 Fortilin 小分子抑制剂
- 批准号:
10706870 - 财政年份:2023
- 资助金额:
$ 20.33万 - 项目类别: