Engineered salivary gland tissue chips
工程唾液腺组织芯片
基本信息
- 批准号:9405187
- 负责人:
- 金额:$ 77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:Acinar CellAdhesivesAffectAmylasesBenchmarkingBiochemicalBiological PreservationCapsid ProteinsCell CountCell SurvivalCell physiologyCellsCharacteristicsChronicCouplingCrosslinkerCuesDNA DamageDataDependenceDevelopmentDiagnosisDuct (organ) structureDuctal Epithelial CellElastomersEncapsulatedEngineeringExhibitsExtracellular Matrix ProteinsFDA approvedGelGeneticGlandGoalsHead and Neck CancerHumanHydrogelsImmune systemIn VitroInjectableLabelLengthLibrariesMaintenanceMatrix MetalloproteinasesMicrobubblesModelingMoldsMusNatureNerveOpticsOutcomeParacrine CommunicationPatientsPeptidesPharmaceutical PreparationsPharmacological TreatmentPhasePhenotypePlasmaPolymersPreventionProlactinProteinsRadiationRadiation ToleranceRadiation induced damageRadiation therapyRadiation-Protective AgentsRadioprotectionResolutionSalivaSalivarySalivary Gland TissueSalivary GlandsSignal TransductionSliceStaining methodStainsStem cellsStructureSystemTechnologyTestingTherapeuticTissue MicroarrayTissuesXerostomiaautocrinebasebiomaterial compatibilitycholinergicchromatin immunoprecipitationdensitydrug efficacyethylene glycolhead and neck cancer patienthigh throughput screeninghuman tissueimprovedin vivoirradiationmimeticsmouse modelparacrinepolydimethylsiloxaneradiosensitiveregenerativescreeningsecretory proteinself assemblystemtool
项目摘要
Abstract: For more than 550,000 patients annually diagnosed with head and neck cancers worldwide, severe
loss of salivary gland function (xerostomia) is an unavoidable outcome of radiation therapy. There are
presently no reliable and safe pharmacologic treatments for the resolution or prevention of radiation-induced
xerostomia. Efforts to study radiosensitivity to discover effective radioprotective and regenerative strategies
have been hampered by the inability to culture salivary gland mimetics in vitro, due to loss of secretory acinar
cell phenotype. The principal milestone of this proposal is to engineer functional human salivary gland tissue
chips to overcome this obstacle. Our labs have pioneered the use of hydrogel encapsulation to culture salivary
gland cells in vitro. We have successfully demonstrated salivary gland cell survival up to 1 month post-
encapsulation. Furthermore, cells organize into structures with apicobasal polarity and express secretory
acinar markers, including Mist1. Although these data are promising, secretory marker expression is reduced
compared to the native gland. Furthermore, the macroscale nature of hydrogels precludes their high-
throughput use. Thus, we will utilize our microbubble (MB) array technology as a high-throughput, modular
platform for the tissue chips. MBs are micron-scale spherical cavities molded in polydimethylsiloxane (PDMS).
MBs have the advantage of length scales and curvatures similar to the secretory acinar unit of glands,
providing a niche that promotes cell-cell contact and the concentration autocrine and paracrine factors that
have been shown to enhance tissue assembly. Furthermore, MBs can be integrated with other
microphysiological systems such as endothelial, nerve, and immune system chips. During the UG3 phase of
this project, the go/no-go criteria will be the use of the MB platform to develop human gland tissue mimetics
capable of long-term secretory function. Specifically for UG3, Aim 1 will use genetically labeled mouse acinar
and duct cells to identify culture characteristics that maximize gland tissue mimetic function. Acinar and duct
cell seeding ratios and densities will be varied in ‘blank’, extracellular matrix protein-functionalized, and in
hydrogels all within MBs. Aim 2 (UG3) will validate the ability of human salivary gland cells to cellularly
organize and maintain function in our previously developed macrogels and in within hydrogels in MBs, similarly
to mouse cells in Aim 1. Our goal is to demonstrate functional human gland mimetic development in MB arrays
by end of UG3. If successful, the UH3 phase will investigate hydrogel microenvironmental cues to further
promote gland mimetic organization and function. Finally, Aim 3 will demonstrate the utility of gland mimetics
by screening FDA-approved drugs to identify effective radioprotective agents. These compounds will be
retroductally injected into mice to validate radioprotective potential. Successful development of salivary tissue
chips will be transformative; by enabling in vitro analysis of functional gland mimetics, our ability to pursue
therapeutic strategies, radioprotective and regenerative, will be dramatically improved.!
摘要:对于全球超过 550,000 名被诊断患有头颈癌的患者来说,严重的
唾液腺功能丧失(口干症)是放射治疗不可避免的结果。
目前尚无可靠且安全的药物治疗方法来解决或预防辐射引起的
努力研究放射敏感性以发现有效的放射防护和再生策略。
由于分泌性腺泡的缺失,无法在体外培养唾液腺模拟物,从而阻碍了这项工作
该提案的主要里程碑是设计功能性人类唾液腺组织。
我们的实验室率先使用水凝胶封装来培养唾液。
我们已成功证明唾液腺细胞在体外存活长达 1 个月。
此外,细胞组织成具有顶端基底极性的结构并表达分泌。
腺泡标记物,包括 Mist1 虽然这些数据很有希望,但分泌标记物的表达却减少了。
此外,与天然腺体相比,水凝胶的宏观性质排除了它们的高水平。
因此,我们将利用我们的微泡 (MB) 阵列技术作为高通量、模块化技术。
MB 是用聚二甲基硅氧烷 (PDMS) 模制的微米级球形空腔。
MB 的优点是长度尺度和曲率类似于腺体的分泌腺泡单位,
提供促进细胞间接触的利基以及自分泌和旁分泌因子的浓度
已被证明可以增强组织组装此外,MB 可以与其他物质整合。
微生理系统,如内皮、神经和免疫系统芯片在 UG3 阶段。
该项目的通过/不通过标准将是使用 MB 平台开发人体腺组织模拟物
专门针对 UG3,Aim 1 将使用基因标记的小鼠腺泡。
和导管细胞,以确定最大化腺体组织模拟功能的培养特征。
细胞接种比例和密度在“空白”、细胞外基质蛋白功能化和“空白”中会有所不同
Aim 2 (UG3) 内的水凝胶将验证人类唾液腺细胞的细胞能力。
类似地,在我们之前开发的大凝胶和 MB 中的水凝胶中组织和维持功能
目标 1 中的小鼠细胞。我们的目标是在 MB 阵列中展示功能性人类腺体模拟发育
如果成功,UH3 阶段将在 UG3 结束时研究水凝胶微环境线索以进一步研究。
最后,目标 3 将展示腺体模拟物的实用性。
通过筛选 FDA 批准的药物来鉴定这些化合物将是有效的辐射防护剂。
逆管注射到小鼠体内以验证唾液组织的成功发育。
芯片将具有变革性;通过对功能性腺体模拟物进行体外分析,我们有能力追求
放射防护和再生治疗策略将得到显着改善。!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle S. Benoit其他文献
Danielle S. Benoit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle S. Benoit', 18)}}的其他基金
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
- 批准号:
10830613 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10467753 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
- 批准号:
10461486 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Tendon TRAP: Targeted Therapeutic Delivery to Enhance Tendon Healing
Tendon TRAP:有针对性的治疗交付以增强肌腱愈合
- 批准号:
10612076 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Using hiPSCs to develop physiologically-relevant outer retina tissue mimetics
使用 hiPSC 开发生理相关的外视网膜组织模拟物
- 批准号:
10709483 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Bone-targeted polymer therapeutics for nonunion fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10371267 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10733942 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
Bone-targeted polymer therapeutics for non-union fracture healing
用于骨不连骨折愈合的骨靶向聚合物治疗
- 批准号:
10681217 - 财政年份:2022
- 资助金额:
$ 77万 - 项目类别:
hiPSC-derived tissue mimetics of the retina blood barrier
hiPSC 衍生的视网膜血屏障组织模拟物
- 批准号:
10080730 - 财政年份:2020
- 资助金额:
$ 77万 - 项目类别:
相似国自然基金
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
A Miniaturized and Integrated Continuous Metabolic Monitoring Platform
小型化集成连续代谢监测平台
- 批准号:
10721798 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
- 批准号:
10737098 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
- 批准号:
10638243 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
Blending Dentin to Dentin: Biometric Hydrogels for Dentin Tissue Engineering
将牙本质与牙本质混合:用于牙本质组织工程的生物识别水凝胶
- 批准号:
10795693 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别:
Development of optoelectronically active nerve adhesive for accelerating peripheral nerve repair
开发用于加速周围神经修复的光电活性神经粘合剂
- 批准号:
10811395 - 财政年份:2023
- 资助金额:
$ 77万 - 项目类别: