Statistical methods for censored and dependently truncated data
审查和相关截断数据的统计方法
基本信息
- 批准号:9175459
- 负责人:
- 金额:$ 33.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAlzheimer&aposs DiseaseBrain NeoplasmsCohort StudiesCollectionCox ModelsDataData AnalysesData SetDementiaDependenceDependencyDerivation procedureDevelopmentDiseaseEvaluationEventFailureImpaired cognitionImpairmentInvestigationJointsLeftLinkMethodsModelingNeurologicObservational StudyProbabilityPublic HealthResearchRiskSamplingStatistical MethodsStructureSurvival AnalysisSurvivorsTestingTimeWeightbasedensitydisease diagnosisexperiencefollow-uphazardinterestmethod developmentnervous system disordernovelsimulationtau Proteins
项目摘要
Project Summary
Left truncation arises frequently in observational cohort studies, in which subjects are sampled into substudies
at some time during their follow-up, but the time origin of interest occurred prior to substudy sampling. For
example, in the National Alzheimer's Coordinating Center (NACC) cumulative data set, many subjects
experienced onset of cognitive impairment prior to their entry to the data set, and thus their time from
impairment to Alzheimer's disease (AD) diagnosis is left truncated by their time to NACC entry. Standard
methods of risk set adjustment can be used to adjust for this delayed entry, as long as the critical assumption
of quasi-independence (i.e., factorization of the joint density over the observable region) between the entry
time and time to AD diagnosis holds. However, this assumption often does not hold, and the simple adjusted
analyses are biased. Truncated data, unlike purely censored data, enable identification of this requisite
dependence due to joint observation of both the entry (truncation) time and the event time, and formal
statistical tests are available. This proposal is motivated by our team's collective and extensive engagement in
neurological disease studies, which display pervasive dependent truncation, and is supported by our expertise
in survival analysis. This proposal adopts a range of analytical approaches to address dependent truncation
that arises through any of several possible mechanisms. We accommodate unexplained dependence
through inversion of transformation models and permutation null distributions, nonparametric bounds and
estimation, and semi-parametric models, covariate-induced dependence through inverse probability
weighting methods, and dependence that is induced by sequential truncating events through copula
models. This project will establish a significantly enhanced collection of usable and robust methods for the
analysis of dependently truncated data, which will strengthen the validity of research findings from studies of
major public health problems, such as Alzheimer's disease. Each of our aims involves derivation of asymptotic
results, extensive simulation, and application to our motivating neurologic disease studies.
项目摘要
左截断经常出现在观测队列研究中,其中对受试者进行了取样
在其随访期间的某个时间,但是感兴趣的时间发生在取样之前。为了
例如,在国家阿尔茨海默氏症协调中心(NACC)累积数据集中,许多科目
在进入数据集之前,认知障碍经历了经历的发作,因此他们的时间从
阿尔茨海默氏病(AD)诊断的损害因其进入NACC的时间而被截断。标准
只要关键的假设
进入进入之间的准独立性(即关节密度的分解)
AD诊断的时间和时间存在。但是,这个假设通常不存在,并且调整了简单
分析是有偏见的。与纯粹审查的数据不同,截短的数据可以识别此必要的数据
由于对进入时间(截断)时间和事件时间的联合观察以及正式的依赖
可用统计测试。该提议是由我们团队集体和广泛参与的动机
神经疾病研究,显示出普遍的依赖截断,并得到我们的专业知识的支持
在生存分析中。该建议采用了一系列分析方法来解决依赖的截断
这是通过几种可能的机制中的任何一种。我们容纳无法解释的依赖
通过转化模型和置换零分布,非参数界限和
估计和半参数模型,协变量通过反概率诱导的依赖性
加权方法和通过顺序截断事件通过copula引起的依赖性
型号。该项目将为该项目建立可用且可靠的方法的大量收集
分析相关截断的数据,这将增强研究结果的有效性
主要的公共卫生问题,例如阿尔茨海默氏病。我们的每个目标都涉及渐近派的衍生
结果,广泛的模拟以及对我们激励神经系统疾病研究的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
REBECCA A. BETENSKY其他文献
REBECCA A. BETENSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('REBECCA A. BETENSKY', 18)}}的其他基金
Statistical methods for censored and dependently truncated data
审查和相关截断数据的统计方法
- 批准号:
9277585 - 财政年份:2016
- 资助金额:
$ 33.76万 - 项目类别:
Pipelines into Biostatistics: Training in Quantitative Public Health
生物统计学的管道:定量公共卫生培训
- 批准号:
8727591 - 财政年份:2013
- 资助金额:
$ 33.76万 - 项目类别:
Pipelines into Biostatistics: Training in Quantitative Public Health
生物统计学的管道:定量公共卫生培训
- 批准号:
8856583 - 财政年份:2013
- 资助金额:
$ 33.76万 - 项目类别:
Pipelines into Biostatistics: Training in Quantitative Public Health
生物统计学的管道:定量公共卫生培训
- 批准号:
8333775 - 财政年份:2013
- 资助金额:
$ 33.76万 - 项目类别:
Signal processing for accurate detection of copy number variants in cancer
用于准确检测癌症中拷贝数变异的信号处理
- 批准号:
8458511 - 财政年份:2012
- 资助金额:
$ 33.76万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
- 批准号:
10637323 - 财政年份:2023
- 资助金额:
$ 33.76万 - 项目类别:
Enhancing Participation of Historically Minoritized Groups in Alzheimer Disease and Related Dementias Research
加强历史上少数群体对阿尔茨海默病和相关痴呆症研究的参与
- 批准号:
10752461 - 财政年份:2023
- 资助金额:
$ 33.76万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 33.76万 - 项目类别:
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
- 批准号:
10729272 - 财政年份:2023
- 资助金额:
$ 33.76万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 33.76万 - 项目类别: