Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
基本信息
- 批准号:10586941
- 负责人:
- 金额:$ 65.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Artificial tissueBehaviorCellsCellular Metabolic ProcessCirrhosisComplexCytoplasmic InclusionDataDevelopmentDiseaseElasticityElementsExtracellular MatrixFibrosisGoalsHealthHistologyIn VitroIndividualIntercellular FluidInterventionLengthLinkLiverMachine LearningMeasurementMeasuresMechanical StressMechanicsModelingOrganPathologicPredictive ValuePropertyRoleSolidStressStructureSystemTestingTimeTissue ModelTissuesViscosityWorkalgorithm trainingbasecell behaviorclinically relevantdefined contributiondesignin vivomachine learning methodmechanical propertiesprediction algorithmpressuretheoriestherapeutic targetviscoelasticity
项目摘要
PROJECT SUMMARY
Cells and tissues are mechanosensitive. Many
and
tissues, including the liver, are subjected to mechanical stresses
deformed over multiple time and length scales; these can both be altered in disease and drive disease.We
have used in vitro experimentation and theory to show that tissue mechanics are an emergent property,
arising from and requiring three components: the complex fibrous network of the extracellular matrix (ECM), the
cells within that network, and the forces applied to the combined system. Our work in the three years of the past
project period has specifically examined the microarchitecture and features of complex fibrous networks, the role
of cytoplasmic inclusions and cytoskeletal networks on cell mechanics, and the impact of viscoelasticity on cell
and tissue behavior. Collectively, this work has resulted in the development of a multi-axial model of a tissue.
Notably, however, while significant strides have been made in understanding tissue elasticity, viscous dissipation
and plasticity have been little studied, and the relationship between mechanics and structure – to the point that
one can be predicted from the other – remains poorly understood.
The overall goal in this competing renewal proposal is to demonstrate the in vivo applicability and predictive
value of the concepts we have defined. Specifically, we propose to determine the contribution of the individual
components of tissues to emergent tissue mechanics and the impact of these mechanics on cell behavior. Our
model tissue in this proposal, as in previous project periods, is the normal, fibrotic, and cirrhotic liver. although
our findings will be generally applicable to other organs in the body.
We hypothesize that tissue mechanics including viscous dissipation can be described and predicted by
integrating the features of the ECM fibrous network, the cells, and the applied forces. There are three specific
aims: 1) to determine the relationships between matrix structure and viscous dissipation, elasticity, and plasticity
in normal and diseased tissue; 2) to determine the impact of cell properties and cell-matrix organization on tissue
mechanics, particularly viscosity; and 3) to measure tissue solid stress and interstitial fluid pressure in normal
and diseased tissue and to define the impact of these forces on tissue mechanics, including dissipation. These
specific aims will use experimentation and theory as well as machine learning approaches to predict the
relationship between structure and mechanics, guide interventions, and generate a unified and therapeutically-
targetable model of tissue mechanics in disease.
We have previously identified many of the design principles underlying tissue mechanics. In the proposed work,
we will further define the critical components of the three elements underlying tissue mechanics, asking whether
we can predict mechanics (and their effects on cells and metabolism) from structure. This proposal thus has the
potential to answer fundamental questions in tissue mechanics, and to suggest approaches to manipulating
mechanics in clinically-relevant ways.
项目概要
许多细胞和组织对机械力敏感。
和
包括肝脏在内的组织受到机械应力
在多个时间和长度尺度上变形;这些都可能处于疾病状态并导致疾病。
使用体外实验和理论来证明组织力学是一种新兴的特性,
由三个组成部分产生并需要三个组成部分:细胞外基质 (ECM) 的复杂纤维网络、
该网络中的细胞,以及我们过去三年的工作所施加的力量。
项目期间专门研究了复杂纤维网络的微结构和特征、作用
细胞质内含物和细胞骨架网络对细胞力学的影响,以及粘弹性对细胞的影响
总的来说,这项工作开发了组织的多轴模型。
然而值得注意的是,虽然在理解组织弹性、粘性耗散方面已经取得了重大进展
和塑性的研究很少,而力学和结构之间的关系 - 以至于
一个可以从另一个预测——仍然知之甚少。
这项竞争更新提案的总体目标是证明体内适用性和预测性
具体来说,我们建议确定个人的贡献。
组织的组成部分到新兴的组织力学以及这些力学对细胞行为的影响。
与之前项目期间一样,本提案中的模型组织是正常的、纤维化的和肝硬化的肝脏。
我们的研究结果普遍适用于身体的其他器官。
我们寻求可以通过以下方式描述和预测包括粘性耗散在内的组织力学
结合 ECM 纤维网络、细胞和施加的力的特征,存在三种特定的情况。
目标:1) 确定基体结构与粘性耗散、弹性和塑性之间的关系
在正常和患病组织中;2) 确定细胞特性和细胞基质组织对组织的影响
力学,特别是粘度;3) 测量正常情况下的组织固体应力和间质液压力
和患病组织,并定义这些力对组织力学的影响,包括耗散。
具体目标将使用实验和理论以及机器学习方法来预测
结构和力学之间的关系,指导干预措施,并产生统一的治疗方法
疾病组织力学的目标模型。
我们之前已经在拟议的工作中确定了许多组织力学的设计原则。
我们将进一步定义组织力学三个要素的关键组成部分,询问是否
我们可以从结构预测力学(及其对细胞和新陈代谢的影响)。
有可能回答组织力学的基本问题,并提出操纵方法
以临床相关的方式进行力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul A Janmey其他文献
Paul A Janmey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul A Janmey', 18)}}的其他基金
Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
- 批准号:
10797477 - 财政年份:2020
- 资助金额:
$ 65.28万 - 项目类别:
Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
- 批准号:
10597592 - 财政年份:2020
- 资助金额:
$ 65.28万 - 项目类别:
Regulation of cell function by mechanical properties of biopolymer networks and lipid bilayers
通过生物聚合物网络和脂质双层的机械特性调节细胞功能
- 批准号:
10380120 - 财政年份:2020
- 资助金额:
$ 65.28万 - 项目类别:
Spatial control of actin assembly by phosphoinositides
磷酸肌醇对肌动蛋白组装的空间控制
- 批准号:
8962478 - 财政年份:2015
- 资助金额:
$ 65.28万 - 项目类别:
Spatial control of actin assembly by phosphoinositides
磷酸肌醇对肌动蛋白组装的空间控制
- 批准号:
8962478 - 财政年份:2015
- 资助金额:
$ 65.28万 - 项目类别:
Spatial control of actin assembly by phosphoinositides
磷酸肌醇对肌动蛋白组装的空间控制
- 批准号:
9331719 - 财政年份:2015
- 资助金额:
$ 65.28万 - 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
- 批准号:
8758936 - 财政年份:2014
- 资助金额:
$ 65.28万 - 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
- 批准号:
10708104 - 财政年份:2014
- 资助金额:
$ 65.28万 - 项目类别:
Pathological consequences of altered tissue mechanics in fibrosis
纤维化过程中组织力学改变的病理后果
- 批准号:
10240476 - 财政年份:2014
- 资助金额:
$ 65.28万 - 项目类别:
Regulation of the Micromechanical Properties of Cells by Intermediate Filaments
中间丝对细胞微机械性能的调节
- 批准号:
8142486 - 财政年份:2011
- 资助金额:
$ 65.28万 - 项目类别:
相似国自然基金
超拉伸、可重构微流道中细胞黏弹性-惯性迁移行为的调控机理研究
- 批准号:52305609
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
星形胶质细胞多巴胺D1受体调控焦虑样行为的机制研究
- 批准号:32300968
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
赖氨酸甲基转移酶SETD7通过P53信号通路调控Gli1+细胞生物学行为及其在颅面骨稳态维持中的作用研究
- 批准号:82301050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
斑蝥素通过抑制BIRC5激活ATG5/ATG7促进自噬抑制非小细胞肺癌恶性行为的作用和机制研究进展
- 批准号:82360485
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Multilineage DAmFRET to investigate AD/ADRD protein phase behavior in neural tissue models
多谱系 DAmFRET 研究神经组织模型中 AD/ADRD 蛋白相行为
- 批准号:
10583428 - 财政年份:2023
- 资助金额:
$ 65.28万 - 项目类别:
High Throughput Clonal Analyses of Gliogenesis in Neocortical and Paleocortical areas of the Mouse Brain
小鼠大脑新皮质和古皮质区域胶质生成的高通量克隆分析
- 批准号:
10536298 - 财政年份:2022
- 资助金额:
$ 65.28万 - 项目类别:
Identifying long-range polarity cues using spontaneous mutations in mammals
利用哺乳动物的自发突变识别长程极性线索
- 批准号:
10438096 - 财政年份:2021
- 资助金额:
$ 65.28万 - 项目类别:
In vitro 3D human gingival tissue model to study oral microbiome
用于研究口腔微生物组的体外 3D 人类牙龈组织模型
- 批准号:
10665832 - 财政年份:2021
- 资助金额:
$ 65.28万 - 项目类别:
In vitro 3D human gingival tissue model to study oral microbiome
用于研究口腔微生物组的体外 3D 人类牙龈组织模型
- 批准号:
10613304 - 财政年份:2021
- 资助金额:
$ 65.28万 - 项目类别: