Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
基本信息
- 批准号:10631143
- 负责人:
- 金额:$ 78.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-26 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdolescentAttention deficit hyperactivity disorderBehavioralBehavioral ModelBeliefBig DataBrainChildClinicalCognitionCognitiveComputer ModelsDevelopmentDimensionsEarly treatmentGoalsImpairmentLearningLinkMeasuresMental disordersMethodsMissionModelingMonitorNational Institute of Mental HealthPerformanceProcessPsychopathologyReaction TimeReproducibilityResearchResearch Domain CriteriaRiskSamplingSchizophreniaStimulusSubstance abuse problemSymptomsTimeUpdateautism spectrum disorderbasebehavior measurementbehavioral constructbiomarker developmentbrain behaviorcognitive developmentcognitive processcognitive systemcohortearly detection biomarkersexpectationexternalizing behaviorflexibilityinnovationinsightneuralneural circuitneurodevelopmentnoveltrait
项目摘要
Project Abstract
Impairments in cognitive systems that regulate the ability to adaptively engage with and respond to changing
stimuli and goals are a hallmark of psychopathology. Identifying the underlying cognitive and neural factors that
drive dysfunctional behavioral dynamics is a primary goal for psychiatric research. However conventional
methods are unable to reveal latent constructs that govern these dynamic processes. Novel computational
approaches are required to reveal latent behavioral dynamics and traits associated with psychopathology, and
their neural circuit basis, within the Research Domain Criteria (RDoC) framework. Most, if not all, psychiatric
disorders have a neurodevelopmental origin and are associated with atypical maturation of cognitive brain
networks. Cognition is a dynamic process, which relies on flexible inhibitory control, goal-directed beliefs
that impact moment-to-moment expectation, and the capacity to learn and adapt from prior decisions.
Developing dynamic latent behavioral models of cognition is significant in the context of psychopathology,
because deficits in inhibitory control, performance monitoring and belief updating are implicated in multiple
psychiatric disorders including ADHD, autism, and schizophrenia. Our overarching goal is to develop and
validate Hierarchical Latent Variable Dynamics (HLVD), a novel integrative computational approach for
discovering robust latent behavioral constructs and their neural circuit bases. The proposed studies will
leverage the longitudinal Adolescent Behavioral and Cognitive Development (ABCD) study, which has
generated unprecedented amounts of “Big Data” (N>5,000) for charting cognitive and brain development in
children and adolescents over time. Crucially, HLVD will be used to identify and validate novel latent constructs
of behavioral dynamics that are expected to be significant dimensional predictors of externalizing symptoms
and developmental psychopathology. The proposed studies will significantly enhance our understanding of
RDoC constructs and provide new insights into latent behavioral dynamics and traits associated with
psychopathology in the developing brain. Our studies are highly relevant to the mission of the NIMH initiative
RFA-MH-19-242, which seeks to accelerate research on neurodevelopment and trajectories of risk for mental
illness. Our innovative approach will ultimately aid in the development of biomarkers for early detection and
treatment of psychiatric disorders.
项目摘要
认知系统的损害,这些系统调节能力适应和反应变化的能力
刺激和目标是心理病理学的标志。确定潜在的认知和神经因素
驱动功能失调的行为动态是精神病研究的主要目标。但是传统
方法无法揭示控制这些动态过程的潜在构造。新颖的计算
需要方法来揭示与心理病理学相关的潜在行为动态和特征
在研究领域标准(RDOC)框架内,它们的神经回路基础。大多数(如果不是全部)精神病学
疾病具有神经发育起源,与认知大脑的非典型成熟有关
网络。认知是一个动态过程,它依赖于灵活的抑制性控制,目标指导的信念
这会影响到时刻的期望,以及从先前的决定中学习和适应的能力。
在心理病理学的背景下,发展动态的潜在认知行为模型很重要,
因为在抑制性控制中定义,性能监视和相信更新与多个有关
精神病患者,包括多动症,自闭症和精神分裂症。我们的总体目标是发展和
验证分层潜在变量动力学(HLVD),这是一种新型的集成计算方法
发现强大的潜在行为构建体及其神经电路基础。拟议的研究将
利用纵向青少年行为和认知发展(ABCD)研究
生成了前所未有的“大数据”(n> 5,000),用于绘制认知和大脑的发展
随着时间的流逝,儿童和青少年。至关重要的是,HLVD将用于识别和验证新型潜在构建体
行为动态的预期是外在符号的重要维度预测指标
和发展心理病理学。拟议的研究将大大增强我们对
RDOC结构并提供有关与与之相关的潜在行为动态和特征的新见解
发育中的大脑的心理病理学。我们的研究与NIMH启动的使命高度相关
RFA-MH-19-242,旨在加快有关神经发育和精神风险轨迹的研究
我们的创新方法最终将有助于开发生物标志物,以供早期检测和
精神疾病的治疗。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developmental Maturation of Causal Signaling Hubs in Voluntary Control of Saccades and Their Functional Controllability.
- DOI:10.1093/cercor/bhab514
- 发表时间:2022-01
- 期刊:
- 影响因子:3.7
- 作者:Yuan Zhang;S. Ryali;Weidong Cai;Kaustubh Supekar;R. Pasumarthy;A. Padmanabhan;Beatriz Luna;V. Menon
- 通讯作者:Yuan Zhang;S. Ryali;Weidong Cai;Kaustubh Supekar;R. Pasumarthy;A. Padmanabhan;Beatriz Luna;V. Menon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINOD MENON其他文献
VINOD MENON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINOD MENON', 18)}}的其他基金
Circuit Mechanisms Governing the Default Mode Network
管理默认模式网络的电路机制
- 批准号:
10380898 - 财政年份:2021
- 资助金额:
$ 78.31万 - 项目类别:
Circuit Mechanisms Governing the Default Mode Network
管理默认模式网络的电路机制
- 批准号:
10576946 - 财政年份:2021
- 资助金额:
$ 78.31万 - 项目类别:
Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
- 批准号:
10200653 - 财政年份:2019
- 资助金额:
$ 78.31万 - 项目类别:
Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
- 批准号:
10425350 - 财政年份:2019
- 资助金额:
$ 78.31万 - 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
- 批准号:
10468844 - 财政年份:2018
- 资助金额:
$ 78.31万 - 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
- 批准号:
9769805 - 财政年份:2018
- 资助金额:
$ 78.31万 - 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: Outcomes and Trajectories
数学障碍的纵向神经认知研究:结果和轨迹
- 批准号:
10842461 - 财政年份:2018
- 资助金额:
$ 78.31万 - 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
- 批准号:
10259850 - 财政年份:2018
- 资助金额:
$ 78.31万 - 项目类别:
Novel Bayesian linear dynamical systems-based methods for discovering human brain circuit dynamics in health and disease
新颖的——贝叶斯——线性——动态——基于系统的——方法——用于发现——人类——大脑——电路——健康和疾病的动力学
- 批准号:
9170593 - 财政年份:2016
- 资助金额:
$ 78.31万 - 项目类别:
Computational modeling of dynamic causal brain circuits underlying cognitive dysfunction in Alzheimer's disease
阿尔茨海默病认知功能障碍的动态因果脑回路的计算模型
- 批准号:
10301331 - 财政年份:2014
- 资助金额:
$ 78.31万 - 项目类别:
相似国自然基金
自然接触对青少年网络问题行为的作用机制及其干预
- 批准号:72374025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
大气污染物对青少年心理健康的影响机制研究
- 批准号:42377437
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
中国父母情绪教养行为对青少年非自杀性自伤的影响及其机制
- 批准号:32300894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
执行技能训练联合动机行为治疗对注意缺陷多动障碍青少年疗效及脑机制
- 批准号:82371557
- 批准年份:2023
- 资助金额:65 万元
- 项目类别:面上项目
相似海外基金
ADHD and the influence of adolescent alcohol drinking on cognition and behavior
ADHD 以及青少年饮酒对认知和行为的影响
- 批准号:
10812071 - 财政年份:2023
- 资助金额:
$ 78.31万 - 项目类别:
Center for Team Effectiveness to Accelerate EBP Implementation in Children's Mental Health Services
团队效能中心加速儿童心理健康服务中的 EBP 实施
- 批准号:
10677034 - 财政年份:2022
- 资助金额:
$ 78.31万 - 项目类别:
COBRE Center for Sleep and Circadian Rhythms in Child and Adolescent Mental Health
COBRE 儿童和青少年心理健康睡眠和昼夜节律中心
- 批准号:
10594987 - 财政年份:2021
- 资助金额:
$ 78.31万 - 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
- 批准号:
10630919 - 财政年份:2021
- 资助金额:
$ 78.31万 - 项目类别:
Computational Modeling-Informed Reward Subgroups in Adolescent ADHD
青少年多动症的计算模型知情奖励亚组
- 批准号:
10557890 - 财政年份:2020
- 资助金额:
$ 78.31万 - 项目类别: