Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach

儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法

基本信息

  • 批准号:
    10631143
  • 负责人:
  • 金额:
    $ 78.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-26 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Project Abstract Impairments in cognitive systems that regulate the ability to adaptively engage with and respond to changing stimuli and goals are a hallmark of psychopathology. Identifying the underlying cognitive and neural factors that drive dysfunctional behavioral dynamics is a primary goal for psychiatric research. However conventional methods are unable to reveal latent constructs that govern these dynamic processes. Novel computational approaches are required to reveal latent behavioral dynamics and traits associated with psychopathology, and their neural circuit basis, within the Research Domain Criteria (RDoC) framework. Most, if not all, psychiatric disorders have a neurodevelopmental origin and are associated with atypical maturation of cognitive brain networks. Cognition is a dynamic process, which relies on flexible inhibitory control, goal-directed beliefs that impact moment-to-moment expectation, and the capacity to learn and adapt from prior decisions. Developing dynamic latent behavioral models of cognition is significant in the context of psychopathology, because deficits in inhibitory control, performance monitoring and belief updating are implicated in multiple psychiatric disorders including ADHD, autism, and schizophrenia. Our overarching goal is to develop and validate Hierarchical Latent Variable Dynamics (HLVD), a novel integrative computational approach for discovering robust latent behavioral constructs and their neural circuit bases. The proposed studies will leverage the longitudinal Adolescent Behavioral and Cognitive Development (ABCD) study, which has generated unprecedented amounts of “Big Data” (N>5,000) for charting cognitive and brain development in children and adolescents over time. Crucially, HLVD will be used to identify and validate novel latent constructs of behavioral dynamics that are expected to be significant dimensional predictors of externalizing symptoms and developmental psychopathology. The proposed studies will significantly enhance our understanding of RDoC constructs and provide new insights into latent behavioral dynamics and traits associated with psychopathology in the developing brain. Our studies are highly relevant to the mission of the NIMH initiative RFA-MH-19-242, which seeks to accelerate research on neurodevelopment and trajectories of risk for mental illness. Our innovative approach will ultimately aid in the development of biomarkers for early detection and treatment of psychiatric disorders.
项目摘要 调节适应性参与和响应变化的能力的认知系统受损 刺激和目标是精神病理学的一个标志,识别潜在的认知和神经因素。 驱动功能失调的行为动力学是精神病学研究的主要目标。 方法无法揭示控制这些动态过程的潜在结构。 需要采取方法来揭示与精神病理学相关的潜在行为动态和特征,并且 他们的神经回路基础,在研究领域标准(RDoC)框架内,大多数(如果不是全部)都是精神病学的。 疾病具有神经发育起源,并与认知脑的非典型成熟有关 认知是一个动态过程,依赖于灵活的抑制控制、目标导向的信念。 这会影响每时每刻的期望,以及从先前决策中学习和适应的能力。 发展动态的潜在认知行为模型在精神病理学背景下具有重要意义, 因为抑制控制、表现监控和信念更新方面的缺陷与多种因素有关 我们的首要目标是开发和治疗精神疾病,包括多动症、自闭症和精神分裂症。 验证分层潜变量动力学 (HLVD),这是一种新颖的综合计算方法 拟议的研究将发现强大的潜在行为结构及其神经回路基础。 利用纵向青少年行为和认知发展(ABCD)研究,该研究已 生成了前所未有的大量“大数据”(N>5,000),用于绘制认知和大脑发育图表 至关重要的是,HLVD 将用于识别和验证新的潜在结构。 行为动力学预计将成为外化症状的重要维度预测因子 拟议的研究将显着增强我们对心理发育病理学的理解。 RDoC 构建并提供了有关潜在行为动态和特征的新见解 我们的研究与 NIMH 倡议的使命高度相关。 RFA-MH-19-242,旨在加速对神经发育和精神风险轨迹的研究 我们的创新方法最终将有助于开发用于早期检测和治疗的生物标记物。 精神疾病的治疗。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developmental Maturation of Causal Signaling Hubs in Voluntary Control of Saccades and Their Functional Controllability.
  • DOI:
    10.1093/cercor/bhab514
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yuan Zhang;S. Ryali;Weidong Cai;Kaustubh Supekar;R. Pasumarthy;A. Padmanabhan;Beatriz Luna;V. Menon
  • 通讯作者:
    Yuan Zhang;S. Ryali;Weidong Cai;Kaustubh Supekar;R. Pasumarthy;A. Padmanabhan;Beatriz Luna;V. Menon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

VINOD MENON其他文献

VINOD MENON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('VINOD MENON', 18)}}的其他基金

Circuit Mechanisms Governing the Default Mode Network
管理默认模式网络的电路机制
  • 批准号:
    10380898
  • 财政年份:
    2021
  • 资助金额:
    $ 78.31万
  • 项目类别:
Circuit Mechanisms Governing the Default Mode Network
管理默认模式网络的电路机制
  • 批准号:
    10576946
  • 财政年份:
    2021
  • 资助金额:
    $ 78.31万
  • 项目类别:
Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
  • 批准号:
    10200653
  • 财政年份:
    2019
  • 资助金额:
    $ 78.31万
  • 项目类别:
Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
  • 批准号:
    10425350
  • 财政年份:
    2019
  • 资助金额:
    $ 78.31万
  • 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
  • 批准号:
    10468844
  • 财政年份:
    2018
  • 资助金额:
    $ 78.31万
  • 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
  • 批准号:
    9769805
  • 财政年份:
    2018
  • 资助金额:
    $ 78.31万
  • 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: Outcomes and Trajectories
数学障碍的纵向神经认知研究:结果和轨迹
  • 批准号:
    10842461
  • 财政年份:
    2018
  • 资助金额:
    $ 78.31万
  • 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
  • 批准号:
    10259850
  • 财政年份:
    2018
  • 资助金额:
    $ 78.31万
  • 项目类别:
Novel Bayesian linear dynamical systems-based methods for discovering human brain circuit dynamics in health and disease
新颖的——贝叶斯——线性——动态——基于系统的——方法——用于发现——人类——大脑——电路——健康和疾病的动力学
  • 批准号:
    9170593
  • 财政年份:
    2016
  • 资助金额:
    $ 78.31万
  • 项目类别:
Computational modeling of dynamic causal brain circuits underlying cognitive dysfunction in Alzheimer's disease
阿尔茨海默病认知功能障碍的动态因果脑回路的计算模型
  • 批准号:
    10301331
  • 财政年份:
    2014
  • 资助金额:
    $ 78.31万
  • 项目类别:

相似国自然基金

自然接触对青少年网络问题行为的作用机制及其干预
  • 批准号:
    72374025
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
大气污染物对青少年心理健康的影响机制研究
  • 批准号:
    42377437
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
新发现青少年痛风易感基因OTUD4对痛风炎症的影响及调控机制研究
  • 批准号:
    82301003
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人际压力影响青少年抑郁发展的心理与神经机制:基于自我意识的视角
  • 批准号:
    32371118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

ADHD and the influence of adolescent alcohol drinking on cognition and behavior
ADHD 以及青少年饮酒对认知和行为的影响
  • 批准号:
    10812071
  • 财政年份:
    2023
  • 资助金额:
    $ 78.31万
  • 项目类别:
Center for Team Effectiveness to Accelerate EBP Implementation in Children's Mental Health Services
团队效能中心加速儿童心理健康服务中的 EBP 实施
  • 批准号:
    10677034
  • 财政年份:
    2022
  • 资助金额:
    $ 78.31万
  • 项目类别:
COBRE Center for Sleep and Circadian Rhythms in Child and Adolescent Mental Health
COBRE 儿童和青少年心理健康睡眠和昼夜节律中心
  • 批准号:
    10594987
  • 财政年份:
    2021
  • 资助金额:
    $ 78.31万
  • 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
  • 批准号:
    10630919
  • 财政年份:
    2021
  • 资助金额:
    $ 78.31万
  • 项目类别:
Computational Modeling-Informed Reward Subgroups in Adolescent ADHD
青少年多动症的计算模型知情奖励亚组
  • 批准号:
    10557890
  • 财政年份:
    2020
  • 资助金额:
    $ 78.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了