Novel Bayesian linear dynamical systems-based methods for discovering human brain circuit dynamics in health and disease
新颖的——贝叶斯——线性——动态——基于系统的——方法——用于发现——人类——大脑——电路——健康和疾病的动力学
基本信息
- 批准号:9170593
- 负责人:
- 金额:$ 38.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAlgorithmsAlzheimer&aposs DiseaseBRAIN initiativeBasal GangliaBayesian ModelingBehaviorBrainBrain regionClinicalCognitionComputational algorithmComputer softwareComputing MethodologiesDataData SetDevelopmentDiseaseFactor AnalysisFunctional Magnetic Resonance ImagingFunctional disorderFundingGoalsHealthHumanImpaired cognitionIndividual DifferencesLinkMediatingMethodsMissionModelingNeurocognitiveNeurosciencesParkinson DiseasePatientsPerformancePharmaceutical PreparationsPlayProcessPropertyPublic HealthResearchRodentShort-Term MemorySystemTechniquesTestingTimeUnited States National Institutes of Healthabstractingbasebehavioral outcomebrain researchcognitive functioncomputerized toolsconnectomedynamic systemhuman datain vivoinnovationnervous system disordernoveloptogeneticspublic health relevancesimulationtemporal measurementtoolvector
项目摘要
Project Summary/Abstract
Understanding how the human brain produces cognition ultimately depends on precise quantitative
characterization of context-dependent dynamic functional networks (DFN) that transiently link distributed
brain regions. Progress in achieving this goal has been limited due to a lack of theoretical frameworks for
characterizing DFNs and appropriate computational methods to test them. Devising and validating
computational methods for investigating DFNs in the human brain is thus of great significance. The first major
goal of this proposal is to address a critical need in human brain research by developing novel algorithms for
identifying DFNs and characterizing dynamic network interactions between distributed brain regions. To
achieve this goal, we will develop and validate novel computational methods within the framework of Bayesian
switching linear dynamical systems (BSDS) with vector autoregressive models (VAR) and factor
analysis (FA) that overcome major limitations of existing methods for investigating dynamic interactions in the
human brain. The second major goal of this proposal is to use BSDS to investigate DFNs underlying
cognitive function in healthy adults, and in patients with Parkinson's disease (PD). Severe cognitive
impairment is one of the most devastating behavioral outcomes in patients with PD, yet little is known about
the temporal properties of dysfunctional neurocognitive systems in this debilitating disorder. The computational
algorithms we propose to develop, validate, and apply will allow us to rigorously investigate brain dynamics
that support critical cognitive functions and significantly advance our understanding of dynamic processes
underlying human brain function and dysfunction. Our proposed studies will also, for the first time, investigate
DFNs in simulated, rodent in vivo optogenetic fMRI, as well as human data using state-of-the-art (sub-
second) high-temporal resolution fMRI data generated by the NIH-funded Stanford Alzheimer's Disease
Research Center (ADRC), highlighting critical translational applications of our proposed methods.
Our proposed studies will provide novel tools for investigating dynamic functional networks in the human
brain, with innovative applications to the Human Connectome Project (HCP) and the study of neurological
disorders and clinical neuroscience more broadly. The proposed studies are highly relevant to the mission of
the BRAIN Initiative (RFA-EB-15-006), which calls for the development and dissemination of innovative
computational tools for probing human brain function and dysfunction. Our computational tools will be widely
disseminated to facilitate research into the dynamical aspects of human brain function.
项目摘要/摘要
了解人脑如何产生认知最终取决于精确的定量
瞬时链接分布的上下文依赖性动态功能网络(DFN)的表征
大脑区域。由于缺乏理论框架,实现这一目标的进展受到限制
表征DFN和适当的计算方法来测试它们。设计和验证
因此,用于研究人脑中DFN的计算方法具有重要意义。第一个专业
该建议的目标是通过开发新颖算法来满足人脑研究的关键需求
识别DFN并表征分布式大脑区域之间的动态网络相互作用。到
实现这一目标,我们将在贝叶斯框架内开发和验证新颖的计算方法
使用矢量自回归模型(VAR)和因子切换线性动力系统(BSD)
分析(FA)克服了现有方法用于研究动态相互作用的主要局限性
人脑。该提案的第二个主要目标是使用BSD调查基础DFN
健康成年人以及帕金森氏病(PD)的认知功能。严重的认知
损伤是PD患者中最具破坏性的行为结果之一,但对
这种衰弱障碍中神经认知系统功能失调的时间特性。计算
我们建议开发,验证和应用的算法将使我们能够严格研究大脑动态
支持关键的认知功能,并显着提高我们对动态过程的理解
潜在的人脑功能和功能障碍。我们提出的研究也将首次调查
模拟的,啮齿动物的体内光学遗传fMRI以及人类数据中的DFN以及使用最先进的人类数据(sub--
第二)由NIH资助的斯坦福大学阿尔茨海默氏病产生的高阶段分辨率fMRI数据
研究中心(ADRC),强调了我们提出的方法的关键翻译应用。
我们提出的研究将为研究人类的动态功能网络提供新的工具
大脑,对人类连接项目(HCP)的创新应用和神经学研究
疾病和临床神经科学更广泛。拟议的研究与
大脑倡议(RFA-EB-15-006),呼吁开发和传播创新
用于探测人脑功能和功能障碍的计算工具。我们的计算工具将被广泛
传播以促进对人脑功能的动态方面的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINOD MENON其他文献
VINOD MENON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINOD MENON', 18)}}的其他基金
Circuit Mechanisms Governing the Default Mode Network
管理默认模式网络的电路机制
- 批准号:
10380898 - 财政年份:2021
- 资助金额:
$ 38.68万 - 项目类别:
Circuit Mechanisms Governing the Default Mode Network
管理默认模式网络的电路机制
- 批准号:
10576946 - 财政年份:2021
- 资助金额:
$ 38.68万 - 项目类别:
Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
- 批准号:
10200653 - 财政年份:2019
- 资助金额:
$ 38.68万 - 项目类别:
Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
- 批准号:
10631143 - 财政年份:2019
- 资助金额:
$ 38.68万 - 项目类别:
Integrative computational models of latent behavioral and neural constructs in children: a longitudinal developmental big-data approach
儿童潜在行为和神经结构的综合计算模型:纵向发展大数据方法
- 批准号:
10425350 - 财政年份:2019
- 资助金额:
$ 38.68万 - 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
- 批准号:
10468844 - 财政年份:2018
- 资助金额:
$ 38.68万 - 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
- 批准号:
9769805 - 财政年份:2018
- 资助金额:
$ 38.68万 - 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: Outcomes and Trajectories
数学障碍的纵向神经认知研究:结果和轨迹
- 批准号:
10842461 - 财政年份:2018
- 资助金额:
$ 38.68万 - 项目类别:
Longitudinal Neurocognitive Studies of Mathematical Disabilities: trajectories and outcomes
数学障碍的纵向神经认知研究:轨迹和结果
- 批准号:
10259850 - 财政年份:2018
- 资助金额:
$ 38.68万 - 项目类别:
Computational modeling of dynamic causal brain circuits underlying cognitive dysfunction in Alzheimer's disease
阿尔茨海默病认知功能障碍的动态因果脑回路的计算模型
- 批准号:
10301331 - 财政年份:2014
- 资助金额:
$ 38.68万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Identifying Metabolic and Psychosocial Antecedents and Characteristics of youth-onset Type 2 diabetes (IMPACT DM)
确定青年发病 2 型糖尿病 (IMPACT DM) 的代谢和心理社会因素和特征
- 批准号:
10584028 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别: