Quorum-sensing mediated communication between pandemic Vibrio cholerae and phage VP882

群体感应介导大流行霍乱弧菌和噬菌体 VP882 之间的通讯

基本信息

  • 批准号:
    10601559
  • 负责人:
  • 金额:
    $ 6.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Bacteria are bombarded by infecting viruses, called phages, in natural habitats. Upon infection of a host, phages must undertake one of two lifestyles: lysogeny where the phage remains in the host and is passed down to offspring, or lysis where the phage replicates, kills the host, and spreads to new cells. Phages have been thought to transition from lysogeny to lysis exclusively in response to host stress and DNA damage. New research from the Bassler laboratory has revealed that phages can monitor host communication molecules, called autoinducers. In a process called quorum sensing, bacteria produce, release, and detect autoinducers, and in response, orchestrate group behaviors. Quorum-sensing-responsive phages detect host-produced autoinducers and exploit the information they garner to drive their lysis-lysogeny lifestyle transitions. These recent findings position me to discover how phages manipulate bacterial hosts and the consequences to the host, to the multi- species bacterial community of which the host is a member, and to the eukaryotic host in which all the entities reside. The overarching goal of my research is to define how cross-domain communication between vibriophage VP882, the first phage discovered to “eavesdrop” on quorum sensing, and its host, the global pathogen Vibrio cholerae, launches the phage lytic cycle. Using a combination of genetic, biochemical, and structural approaches, I will identify the molecular mechanisms underlying this host-phage chemical communication process. First, I will learn skills in bacterial genetics from experts in the Bassler laboratory and conduct a genetic screen to identify the repressor of the quorum-sensing-induced phage lytic cycle. Second, I will use biochemical methods to quantitatively characterize interactions between two key signaling components in the quorum- sensing-induced phage lysis pathway. Lastly, I will rely on my background in structural biology to solve the structures of these same signaling components, individually and in complex, enabling atomic-level-resolution understanding of the interactions required for the phage to undergo lifestyle transitions. The ideal outcomes of my research are a mechanistic understanding of inter-domain chemical communication and new possibilities for development of phage therapies. Honing my skills in bacterial genetics, protein biochemistry, and macromolecular crystallography over the course of my postdoctoral training will enable me to launch an independent research program at a top-tier research institution.
项目概要/摘要 在自然栖息地中,细菌会受到称为噬菌体的感染病毒的轰炸。 必须采取两种生活方式之一: 溶原性,其中噬菌体保留在宿主体内并传递给 人们认为噬菌体会在后代或裂解中复制、杀死宿主并扩散到新细胞。 专门针对宿主应激和 DNA 损伤从溶源转变为裂解。 巴斯勒实验室发现噬菌体可以监测宿主通讯分子,称为 在称为群体感应的过程中,细菌产生、释放和检测自诱导剂。 群体感应响应噬菌体检测宿主产生的自诱导剂。 并利用他们获得的信息来推动他们的裂解-溶原生活方式转变。 让我能够发现噬菌体如何操纵细菌宿主以及对宿主、对多种微生物的影响 宿主是其成员的物种细菌群落,以及所有实体都存在于其中的真核宿主 我研究的首要目标是定义噬菌体之间的跨域通信。 VP882,第一个被发现“窃听”群体感应的噬菌体,及其宿主,全球病原体弧菌 霍乱,结合遗传、生化和结构启动噬菌体裂解循环。 方法,我将确定这种宿主噬菌体化学通讯背后的分子机制 首先,我会向巴斯勒实验室的专家学习细菌遗传学的技能,并进行遗传学研究。 筛选以确定群体感应诱导的噬菌体裂解循环的阻遏物。 其次,我将使用生化。 定量表征群体中两个关键信号成分之间相互作用的方法 最后,我将依靠我的结构生物学背景来解决这个问题。 这些相同信号成分的结构,无论是单独的还是复杂的,都可以实现原子级分辨率 了解噬菌体经历生活方式转变所需的相互作用。 我的研究是对域间化学通讯的机械理解以及新的可能性 磨练我在细菌遗传学、蛋白质生物化学和噬菌体疗法方面的技能。 在我的博士后培训过程中,大分子晶体学将使我能够启动一个 顶级研究机构的独立研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grace Beggs其他文献

Grace Beggs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于共价有机框架的噬菌体-光催化协同靶向抗菌策略用于顽固性细菌感染的研究
  • 批准号:
    22378279
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于M13噬菌体定向有序组装策略的真菌毒素超灵敏动态光散射免疫传感新方法的研究
  • 批准号:
    32302209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
腹主动脉瘤患者肠道噬菌体组异常及其病因学作用和机制的研究
  • 批准号:
    82370481
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
受体结合蛋白介导宽谱沙门氏菌噬菌体侵染力变化的分子机理
  • 批准号:
    32302244
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微生物磷硫酰化防御系统抗噬菌体分子机制的研究
  • 批准号:
    32300054
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigation of novel chlamydia vaccines in male infection models and sexual transmission challenges
新型衣原体疫苗在男性感染模型和性传播挑战中的研究
  • 批准号:
    10750828
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
Development of a Gene-Transfer-Resistant and Biocontained Next-Generation Bacterial Host for Controlled Drug Delivery
开发用于受控药物输送的抗基因转移和生物包容的下一代细菌宿主
  • 批准号:
    10784171
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
Changes in Enteric Microbiota and Inflammation with HIV PrEP
HIV PrEP 引起的肠道微生物群变化和炎症
  • 批准号:
    10700595
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
2023 Microbial Adhesion and Signal Transduction Gordon Research Conferences and Seminar
2023年微生物粘附和信号转导戈登研究会议和研讨会
  • 批准号:
    10666171
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
Control of Klebsiella capsule biosynthesis and attachment
克雷伯菌荚膜生物合成和附着的控制
  • 批准号:
    10713888
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了